90
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mesomechanical damage of fiber mortar under temperature difference

, , , , , & show all
Pages 763-780 | Received 06 Dec 2021, Accepted 04 Apr 2022, Published online: 22 Apr 2022

References

  • Ahmed, T. W., Ali, A. , & Zidan, R. S. (2020). Properties of high strength polypropylene fiber concrete containing recycled aggregate. Construction and Building Materials, 241, 118010. https://doi.org/10.1016/j.conbuildmat.2020.118010
  • Alsadey, S., & Salem, M. (2016). Influence of polypropylene fiber on strength of concrete. American Journal of Engineering Research, 5(7), 223–226.
  • Ardanuy, M., Claramunt, J., & Toledo Filho, R. D. (2015). Cellulosic fiber reinforced cement-based composites: A review of recent. Construction and Building Materials, 79, 115–128. https://doi.org/10.1016/j.conbuildmat.2015.01.035
  • Asprone, D., Cadoni, E., Iucolano, F., & Prota, A. (2014). Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cement & Concrete Composites, 53, 52–58. https://doi.org/10.1016/j.cemconcomp.2014.06.009
  • Bouziadi, F., Boulekbache, B., & Hamrat, M. (2016). The effects of fibres on the shrinkage of high-strength concrete under various curing temperatures. Construction and Building Materials, 114, 40–48. https://doi.org/10.1016/j.conbuildmat.2016.03.164
  • Cascardi, A., Longo, F., Micelli, F., & Aiello, M. A. (2017). Compressive strength of confined column with Fiber Reinforced Mortar (FRM): New design-oriented-models. Construction and Building Materials, 156, 387–401. https://doi.org/10.1016/j.conbuildmat.2017.09.004
  • China Electric Apparatus Research Institute. (2013). Daily tubular heating element. JB/T 4088-2012. China Machine Press. (in Chinese).
  • Dang, Z., Feng, P., Yang, J.-Q., & Zhang, Q. (2020). Axial compressive behavior of engineered cementitious composite confined by fiber-reinforced polymer. Composite Structures, 243, 112191. https://doi.org/10.1016/j.compstruct.2020.112191
  • Davies, R., & Jefferson, A. (2015). The simulation of inelastic matrix strains in cementitious materials using micromechanical solutions. Engineering Fracture Mechanics, 133, 191–210. https://doi.org/10.1016/j.engfracmech.2014.10.010
  • Dutta, S., & Kishen, J. M. C. (2018). Progressive damage through interface microcracking in cementitious composites: A micromechanics based approach. International Journal of Solids and Structures, 150, 230–240. https://doi.org/10.1016/j.ijsolstr.2018.06.017
  • Francioso, V., Moro, C., Castillo, A., & Velay-Lizancos, M. (2021). Effect of elevated temperature on flexural behavior and fibers-matrix bonding of recycled PP fiber-reinforced cementitious composite. Construction and Building Materials, 269, 121243. https://doi.org/10.1016/j.conbuildmat.2020.121243
  • Guo, J. C., Yu, J. T., & Lu, Z. D. (2008). Experimental research on the splitting tensile strength of concrete at different temperature and time. Industrial Construction, 38(9), 74–81.
  • Guo, Z. (2003). Principles of reinforced concrete. Tsinghua University Press. (in Chinese).
  • Hong, L., Chen, Y. D., Li, T. D., Gao, P., & Sun, L. Z. (2020). Microstructure and bonding behavior of fiber-mortar interface in fiber-reinforced concrete. Construction and Building Materials, 232, 117235. https://doi.org/10.1016/j.conbuildmat.2019.117235
  • Jin, W., Xu, H., Arson, C., & Busetti, S. (2017). Computational model coupling mode II discrete fracture propagation with continuum damage zone evolution. International Journal for Numerical and Analytical Methods in Geomechanics, 41(2), 223–250. https://doi.org/10.1002/nag.2553
  • Kafka, V. (2001). Mesomechanical constitutive modeling. World Scientific.
  • Kay, B. D., & Groenevelt, P. H. (1974). On the interaction of water and heat transport in frozen and unfrozen soils: I. Basic theory; the vapor phase. Soil Science Society of America Journal, 38(3), 395–400. https://doi.org/10.2136/sssaj1974.03615995003800030011x
  • Khaliq, W., & Kodur, V. (2011). Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research, 41(11), 1112–1122. https://doi.org/10.1016/j.cemconres.2011.06.012
  • Leung, C. K. Y., Lai, R., & Lee, A. Y. F. (2005). Properties of wet-mixed fiber reinforced shotcrete and fiber reinforced concrete with similar composition. Cement and Concrete Research 35, 788–795.
  • Li, W., & Du, S. (1995). Evolution of the microcracks in whisker toughening ceramic matrix composite. Acta Mechanica Solidasinica, 8, 106–113.
  • Liang, J., Du, S., & Han, J. (1996). Damage evolution and analysis of composites with inclusions and matrix microcracks. Acta Mechanica Solida Sinica, 17, 296–302.
  • Lu, Z., & Zhu, B. (1993). Experimental research on the reaction of reinforced concrete simply supported beam to fire. Journal of Civil Engineering, 26, 48–54.
  • Mazars, J. (1986). A description of micro-and macroscale damage of concrete structures. Engineering Fracture Mechanics, 25(5–6), 729–737. https://doi.org/10.1016/0013-7944(86)90036-6
  • Mihai, I. C., & Jefferson, A. D. (2011). A material model for cementitious composite materials with an exterior point eshelby microcrack initiation criterion. International Journal of Solids and Structures, 48(24), 3312–3325. https://doi.org/10.1016/j.ijsolstr.2011.08.001
  • Mihai, I. C., & Jefferson, A. D. (2017). A micromechanics based constitutive model for fibre reinforced cementitious composites. International Journal of Solids and Structures, 110-111, 152–169. https://doi.org/10.1016/j.ijsolstr.2017.01.032
  • Nairn, J. A. (2000). Matrix microcracking in composites. Comprehensive Composite Materials, 2, 403–432.
  • Pensé, V., Kondo, D., & Dormieux, L. (2002). Micromechanical analysis of anisotropic damage in brittle materials. Journal of Engineering Mechanics, 128(8), 889–897. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(889)
  • Prawoto, Y. (2017). Mesomechanical aspects of computational modeling for non-homogeneous materials joined by forming, Journal of King Saud University – Engineering Sciences. 29, 40–49.
  • Reifsnider, K. L., & High smith, A. L. (1981). Characteristic damage states: A new approach to representing fatigue damage in composite laminates, materials: experimentation and design in fatigue. Academic Press, 246p.
  • Reis, J. M. L. (2012). Effect of temperature on the mechanical properties of polymer mortars. Materials Research, 15(4), 645–649. https://doi.org/10.1590/S1516-14392012005000091
  • Riding, K. A. (2007). Early age concrete thermal stress measurement and modeling. The University of Texas at Austin.
  • Shi, X., Cheng, J., Xu, L., Feng, T., Han, J., Zhang, P., & Guo, Z. (2022). Study on the effect of WER and EVA on the performance and microstructure of cement mortars for a prefabricated residential floor. Journal of Building Engineering, 49, 104050. https://doi.org/10.1016/j.jobe.2022.104050
  • The National Standards Compilation Group of the People’s Republic of China. (2011). Code for design of concrete structures. China Standards Press. (in Chinese).
  • Wu, H.-C., Sun, P., & Teng, J. (2010). Development of fiber-reinforced cement-based composite sheets for structural retrofit. Journal of Materials in Civil Engineering, 22(6), 572–579. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000056
  • Xi’an Institute of Ministry of Machinery Industry Furnace. (1993). Metal tubular heating element. JB/T 2379-1993. Research Institute of Machinery Industry. (in Chinese).
  • Xie, N., Zhu, Q.-Z., Shao, J.-F., & Xu, L.-H. (2012). Micromechanical analysis of damage in saturated quasi brittle materials. International Journal of Solids and Structures, 49(6), 919–928. https://doi.org/10.1016/j.ijsolstr.2011.12.006
  • Xin, J., Zhang, G., Liu, Y., Wang, Z., & Wu, Z. (2018). Effect of temperature history and restraint degree on cracking behavior of early-age concrete. Construction and Building Materials, 192, 381–390. https://doi.org/10.1016/j.conbuildmat.2018.10.066
  • Zhang, S., & Zhang, X. (2011). FEM study on the shrinkage property of fiber reinforced mortar. In 2011 Second International Conference on Mechanic Automation and Control Engineering (pp. 3156–3159). IEEE.
  • Zhang, Y., & Li, N. (2019). Experimental study on fiber mortar strength at early age under temperature difference. MATEC Web of Conferences, 264, 02005. https://doi.org/10.1051/matecconf/201926402005
  • Zhou, B., Zhang, M., Wang, L., & Ma, G. (2021). Experimental study on mechanical property and microstructure of cement mortar reinforced with elaborately recycled GFRP fiber. Cement and Concrete Composites, 117, 103908. https://doi.org/10.1016/j.cemconcomp.2020.103908
  • Zhu, Q. Z., Shao, J. F., & Kondo, D. (2008). A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials. Comptes RendusMecanique, 336(3), 320–328. https://doi.org/10.1016/j.crme.2007.10.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.