99
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Cyclic behavior of saturated soil: a new 3D model

&
Pages 920-935 | Received 29 Sep 2021, Accepted 14 Apr 2022, Published online: 16 May 2022

References

  • Alarcon-Guzman, A., Leonards, G. A., & Chameau, J. L. (1988). Undrained monotonic and cyclic strength of sands. Journal of Geotechnical Engineering, 114(10), 1089–1109. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1089)
  • Almani, Z. A., Ansari, K., & Memon, A. A. (2012). Mechanism of liquefaction-induced large settlements of buildings. Mehran University Research Journal of Engineering & Technology, C, 31(4), 635–650.
  • Almani, Z. A., Ansari, K., & Memon, N. A. (2013). Liquefaction potential of silty sand in simple shear. Mehran University Research Journal of Engineering & Technology, 32(1), 85–94.
  • Almani, Z. A., Memon, N. A., & Memon, A. A. (2012). Stiff columns as liquefaction mitigation measure for retrofit of existing buildings. Mehran University Research Journal of Engineering & Technology, 31(4), 659–668.
  • Andrianopoulos, K. I. (2007). Use of a new bounding surface model for the analysis of earthquake-induced liquefaction phenomena. Proceedings, 4th International Conference on Earthquake Geotechnical Engineering, 1443.
  • Borja, R. I. (2013). Plasticity (Vol. 2). Springer.
  • Byrne, P. M., Park, S.-S., Beaty, M., Sharp, M., Gonzalez, L., & Abdoun, T. (2004). Numerical modeling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41(2), 193–211. https://doi.org/10.1139/t03-088
  • Castro, G. (1975). Liquefaction and cyclic mobility of saturated sands. Journal of the Geotechnical Engineering Division, 101(6), 551–569. https://doi.org/10.1061/AJGEB6.0000173
  • Dakoulas, P., & Sun, Y. (1991). Behavior of fine sand under cyclic rotation of principal stresses using the hollow cylinder apparatus. Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, March 11-15, Vol. 1, pp. 535–542.
  • Drucker, D. C. (1956). On uniqueness in the theory of plasticity. Quarterly of Applied Mathematics, 14(1), 35–42. https://doi.org/10.1090/qam/77386
  • Fung, Y. C., Tong, P., & Bechtel, S. (2003). Classical and computational solid mechanics. Applied Mechanics Reviews, 56(1), B1–B2. https://doi.org/10.1115/1.1523351
  • Gandomzadeh, A. (2011). Dynamic soil-structure interaction: Effect of nonlinear soil behavior. Université Paris-Est.
  • Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Measurement and parameter effects. Journal of the Soil Mechanics and Foundations Division, 98(6), 603–624. https://doi.org/10.1061/JSFEAQ.0001756
  • Hardin, B. O., & Drnevich, V. P. (2002). Shear modulus and damping in soils: Design equations and curves. Geotechnical Special Publication, 98(118 II), 1459–1484.
  • Iai, S., Matsunaga, Y., & Kameoka, T. (1990). Parameter identification for a cyclic mobility model. Report of the Port and Harbour Research Institute, 29(4), 57–83.
  • Iai, S., Matsunaga, Y., & Kameoka, T. (1992). Strain space plasticity model for cyclic mobility. Soils and Foundations, 32(2), 1–15. https://doi.org/10.3208/sandf1972.32.2_1
  • Ishihara, K., & Towhata, I. (1983). Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 23(4), 11–26. https://doi.org/10.3208/sandf1972.23.4_11
  • Iwan, W. D. (1964). On a class of models for the yielding behavior of continuous and composite systems. Journal of Applied Mechanics, 34(3), 612–617. https://doi.org/10.1115/1.3607751
  • Joyner, W. B. (1977). Method for calculating nonlinear seismic response in two dimensions. National Bureau of Standards Special Publication, 65(477), 18–46.
  • Joyner, W. B., & Chen, A. T. F. (1975). Calculation of nonlinear ground response in earthquakes. Bulletin of the Seismological Society of America, 65(5), 1315–1336.
  • Kramer, S. L., Hartvigsen, A. J., Sideras, S. S., & Ozener, P. T. (2011). Site response modeling in liquefiable soil deposits. Proceedings of the 4th IASPEI/IAEE International Symposium (pp. 1–12). CA, United States: Santa Barbara.
  • Luan, M. T., Jin, D., Zhang, Z. D., Xu, C. S., & Li, P. (2009). Liquefaction of sand under bi-directional cyclic loading. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 31(3), 319–325.
  • Park, S. S., & Byrne, P. M. (2004). Practical constitutive model for soil liquefaction. Numerical Models in Geomechanics - 9th Proceedings of the International Symposium on Numerical Models in Geomechanics, NUMOG 2004 (pp. 181–186). Ottawa, Canada.
  • Prager, W., Kieffer, J., & Epain, R. (1958). Problème de plasticité théorique. Dunod., Paris, p.177.
  • Prévost, J. H. (1977). Mathematical modelling of monotonic and cyclic undrained clay behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 1(2), 195–216. https://doi.org/10.1002/nag.1610010206
  • Prévost, J. H. (1978). Plasticity theory for soil stress-strain behavior. Journal of the Engineering Mechanics Division, 104(5), 1177–1194. https://doi.org/10.1061/JMCEA3.0002411
  • Prévost, J. H. (1980). Mechanics of continuous porous media. International Journal of Engineering Science, 18(6), 787–800. https://doi.org/10.1016/0020-7225(80)90026-9
  • Prévost, J. H. (1985). A simple plasticity theory for frictional cohesionless soils. International Journal of Soil Dynamics and Earthquake Engineering, 4(1), 9–17.
  • Santisi d’Avila, M. P., Lenti, L., & Semblat, J. F. (2012). Modelling strong seismic ground motion: Three-dimensional loading path versus wavefield polarization. Geophysical Journal International, 190(3), 1607–1624. https://doi.org/10.1111/j.1365-246X.2012.05599.x
  • Segalman, D. J., & Starr, M. J. (2008). Inversion of Masing models via continuous Iwan systems. International Journal of Non-Linear Mechanics, 43(1), 74–80. https://doi.org/10.1016/j.ijnonlinmec.2007.10.005
  • Towhata, I. (1985). Modelling soil behavior under principal stress axes rotations. 5th International Conference on Numerical Methods in Geomechanics (Vol. 1, pp. 523–530), Nagoya, Japan, 1-5 April 1985.
  • Towhata, I., & Ishihara, K. (1985). Undrained strength of sand undergoing cyclic rotation of principal stress axes. Soils and Foundations, 25(2), 135–147. https://doi.org/10.3208/sandf1972.25.2_135
  • Vaid, Y. P., & Chern, J. C. (1985). Cyclic and monotonic undrained response of saturated sands. In Advances in the art of testing soils under cyclic conditions (pp. 120–147).
  • Zhang, Q. (2020). Hydromechanical modeling of solid deformation and fluid flow in the transversely isotropic fissured rocks. Computers and Geotechnics, 128, 103812. https://doi.org/10.1016/j.compgeo.2020.103812

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.