317
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Crack healing in concrete by microbially induced calcium carbonate precipitation as assessed through electromechanical impedance technique

, &
Pages 1123-1143 | Received 27 Dec 2021, Accepted 04 May 2022, Published online: 17 May 2022

References

  • Achal, V., Mukherjee, A., & Reddy, M. S. (2011). Microbial concrete: Way to enhance the durability of building structures. Journal of Materials in Civil Engineering, 23(6), 730–734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000159
  • Ahmadi, J., Feirahi, M. H., Farahmand-Tabar, S., & Keshvari Fard, A. H. (2021). A novel approach for non-destructive EMI-based corrosion monitoring of concrete-embedded reinforcements using multi-orientation piezoelectric sensors. Construction and Building Materials, 273, 121689. https://doi.org/10.1016/j.conbuildmat.2020.121689
  • Alazhari, M., Sharma, T., Heath, A., Cooper, R., & Paine, K. (2018). Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Construction and Building Materials, 160, 610–619. https://doi.org/10.1016/j.conbuildmat.2017.11.086
  • Amiri, A., & Bundur, Z. B. (2018). Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Construction and Building Materials, 165, 655–662. https://doi.org/10.1016/j.conbuildmat.2018.01.070
  • Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26. https://doi.org/10.1186/s40064-016-1869-2
  • Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4–5), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3
  • Bansal, T., & Talakokula, V. (2021). Deterioration of structural parameters due to corrosion in prestressed concrete identified by smart probe-based piezo sensor. Engineering Research Express, 3(1), 015011. https://doi.org/10.1088/2631-8695/abded9
  • Bergh, J. M. v., der, Miljević, B., Šovljanski, O., Vučetić, S., Markov, S., Ranogajec, J., & Bras, A. (2020). Preliminary approach to bio-based surface healing of structural repair cement mortars. Construction and Building Materials, 248, 118557. xhttps://doi.org/10.1016/j.conbuildmat.2020.118557
  • Bhalla, S., & Soh, C. K. (2003). Structural impedance based damage diagnosis by piezo-transducers. Earthquake Engineering & Structural Dynamics, 32(12), 1897–1916. https://doi.org/10.1002/eqe.307
  • Bhaskar, S., Anwar Hossain, K. M., Lachemi, M., Wolfaardt, G., & Otini Kroukamp, M. (2017). Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cement and Concrete Composites, 82, 23–33. https://doi.org/10.1016/j.cemconcomp.2017.05.013
  • Bundur, Z. B., Amiri, A., Ersan, Y. C., Boon, N., & De Belie, N. (2017). Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability. Cement and Concrete Research, 98(April), 44–49. https://doi.org/10.1016/j.cemconres.2017.04.005
  • Chaerun, S. K., Syarif, R., & Wattimena, R. K. (2020). Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-74127-4
  • Chaurasia, L., Bisht, V., Singh, L. P., & Gupta, S. (2019). A novel approach of biomineralization for improving micro and macro-properties of concrete. Construction and Building Materials, 195, 340–351. https://doi.org/10.1016/j.conbuildmat.2018.11.031
  • De Belie, N., Gruyaert, E., Al-Tabbaa, A., Antonaci, P., Baera, C., Bajare, D., Darquennes, A., Davies, R., Ferrara, L., Jefferson, T., Litina, C., Miljevic, B., Otlewska, A., Ranogajec, J., Roig-Flores, M., Paine, K., Lukowski, P., Serna, P., Tulliani, J.-M., … Jonkers, H. M. (2018). A review of self-healing concrete for damage management of structures. Advanced Materials Interfaces, 5(17), 1800074–1800028. https://doi.org/10.1002/admi.201800074
  • De Muynck, W., Cox, K., Belie, N., De., & Verstraete, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22(5), 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
  • De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  • Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2013). Viability of calcifying bacterial formulations in fly ash for applications in building materials. Journal of Industrial Microbiology & Biotechnology, 40(12), 1403–1413. https://doi.org/10.1007/s10295-013-1338-7
  • Dhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013, October). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314–313. https://doi.org/10.3389/fmicb.2013.00314
  • Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. https://doi.org/10.1016/j.ejbt.2016.07.003
  • Erşan, Y. Ç., de Belie, N., & Boon, N. (2015). Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. Biochemical Engineering Journal, 101, 108–118. https://doi.org/10.1016/j.bej.2015.05.006
  • Ersan, Y. C., Palin, D., Yengec Tasdemir, S. B., Tasdemir, K., Jonkers, H. M., Boon, N., & De Belie, N. (2018, November). Volume fraction, thickness, and permeability of the sealing layer in microbial self-healing concrete containing biogranules. Frontiers in Built Environment, 4, 1–11. https://doi.org/10.3389/fbuil.2018.00070
  • Feng, Q., Cui, J., Wang, Q., Fan, S., & Kong, Q. (2018). A feasibility study on real-time evaluation of concrete surface crack repairing using embedded piezoceramic transducers. Measurement, 122, 591–596. https://doi.org/10.1016/j.measurement.2017.09.015
  • Ferrara, L., Krelani, V., & Carsana, M. (2014). A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 68, 535–551. https://doi.org/10.1016/j.conbuildmat.2014.07.008
  • Ferrara, L., Van Mullem, T., Alonso, M. C., Antonaci, P., Borg, R. P., Cuenca, E., Jefferson, A., Ng, P. L., Peled, A., Roig-Flores, M., Sanchez, M., Schroefl, C., Serna, P., Snoeck, D., Tulliani, J. M., & De Belie, N. (2018). Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Construction and Building Materials, 167, 115–142. https://doi.org/10.1016/j.conbuildmat.2018.01.143
  • IS 3812 (Part-1): 2003. Pulverized fuel ash — specification. Part 1: For use as Pozzolana in cement, Cement Mortar and Concrete (Second Revision). Bureau of Indian Standards.
  • IS 383: 1970 Specification for Coarse and Fine Aggregates From Natural Sources for Concrete. Bureau of Indian Standards.
  • IS 8112. (2013). Ordinary Portland Cement, 43 Grade- Specification. Bureau of Indian Standards.
  • Jiang, L., Jia, G., Jiang, C., & Li, Z. (2020). Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Construction and Building Materials, 232, 117222. https://doi.org/10.1016/j.conbuildmat.2019.117222
  • Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W., & Likitlersuang, S. (2019). Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials, 212, 737–744. https://doi.org/10.1016/j.conbuildmat.2019.04.035
  • Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036
  • Joshi, S., Goyal, S., Mukherjee, A., & Reddy, M. S. (2017). Microbial healing of cracks in concrete: A review. Journal of Industrial Microbiology & Biotechnology, 44(11), 1511–1525. https://doi.org/10.1007/s10295-017-1978-0
  • Joshi, S., Goyal, S., & Reddy, M. S. (2018). Influence of nutrient components of media on structural properties of concrete during biocementation. Construction and Building Materials, 158, 601–613. https://doi.org/10.1016/j.conbuildmat.2017.10.055
  • Jothi Saravanan, T., Balamonica, K., Bharathi Priya, C., Gopalakrishnan, N., & Murthy, S. G. N. (2017). Piezoelectric EMI–based monitoring of early strength gain in concrete and damage detection in structural components. Journal of Infrastructure Systems, 23(4), 04017029. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000386
  • Kalhori, H., & Bagherpour, R. (2017). Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Construction and Building Materials, 148, 249–260. https://doi.org/10.1016/j.conbuildmat.2017.05.074
  • Kan, L., li, Lv, J., wei, Duan, B., Bei., & Wu, M. (2019). Self-healing of engineered geopolymer composites prepared by fly ash and metakaolin. Cement and Concrete Research, 125(July), 105895. https://doi.org/10.1016/j.cemconres.2019.105895
  • Kaur, N., Goyal, S., Anand, K., & Sahu, G. K. (2021, August). A cost-effective approach for assessment of pre-stressing force in bridges using piezoelectric transducers. Measurement, 168, 108324. https://doi.org/10.1016/j.measurement.2020.108324
  • Kaur, N., Li, L., Bhalla, S., & Xia, Y. (2017). A low-cost version of electro-mechanical impedance technique for damage detection in reinforced concrete structures using multiple piezo configurations. Advances in Structural Engineering, 20(8), 1247–1254. https://doi.org/10.1177/1369433216677124
  • Kaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242, 118151. https://doi.org/10.1016/j.conbuildmat.2020.118151
  • Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349–357. https://doi.org/10.1016/j.conbuildmat.2015.11.006
  • Khushnood, R. A., Qureshi, Z. A., Shaheen, N., & Ali, S. (2020). Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. The Science of the Total Environment, 703, 135007. https://doi.org/10.1016/j.scitotenv.2019.135007
  • Kim, H., Liu, X., Ahn, E., Shin, M., Shin, S. W., & Sim, S. H. (2019). Performance assessment method for crack repair in concrete using PZT-based electromechanical impedance technique. NDT & E International, 104, 90–97. (November 2018), https://doi.org/10.1016/j.ndteint.2019.04.004
  • Ksara, M., Newkirk, R., Langroodi, S. K., Althoey, F., Sales, C. M., Schauer, C. L., & Farnam, Y. (2019). Microbial damage mitigation strategy in cementitious materials exposed to calcium chloride. Construction and Building Materials, 195, 1–9. https://doi.org/10.1016/j.conbuildmat.2018.10.033
  • Li, M., Fang, C., Kawasaki, S., Huang, M., & Achal, V. (2019). International Biodeterioration & Biodegradation Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst cave. International Biodeterioration & Biodegradation, 141, 94–100. https://doi.org/10.1016/j.ibiod.2018.03.008
  • Li, W., Jiang, Z., & Yang, Z. (2017). Acoustic characterization of damage and healing of microencapsulation-based self-healing cement matrices. Cement and Concrete Composites, 84, 48–61. https://doi.org/10.1016/j.cemconcomp.2017.08.013
  • Luo, M., Qian, C., & Li, R. (2015). Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Construction and Building Materials, 87, 1–7. https://doi.org/10.1016/j.conbuildmat.2015.03.117
  • Monteiro, P. J. M., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16(7), 698–699. https://doi.org/10.1038/nmat4930
  • Na, W. S., & Baek, J. (2018). A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors, )18(5), 1307. https://doi.org/10.3390/s18051307
  • Nain, N., Surabhi, R., Yathish, N. V., Krishnamurthy, V., Deepa, T., & Tharannum, S. (2019). Enhancement in strength parameters of concrete by application of Bacillus bacteria. Construction and Building Materials, 202, 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059
  • Narayanan, A., & Subramaniam, K. V. L. (2016). Experimental evaluation of load-induced damage in concrete from distributed microcracks to localized cracking on electro-mechanical impedance response of bonded PZT. Construction and Building Materials, 105, 536–544. https://doi.org/10.1016/j.conbuildmat.2015.12.148
  • Nguyen, T. H., Ghorbel, E., Fares, H., & Cousture, A. (2019, June). Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites, 104, 103340. https://doi.org/10.1016/j.cemconcomp.2019.103340
  • Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (2003). Overview of piezoelectric impedance-based health monitoring and path forward. The Shock and Vibration Digest, 35(6), 451–463. https://doi.org/10.1177/05831024030356001
  • PerkinElmer (2015). A beginner’s guide to thermogravimetric analysis (TGA).
  • Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Material Journal, 98, 3–9.
  • Rong, H., Wei, G., Ma, G., Zhang, Y., Zheng, X., Zhang, L., & Xu, R. (2020). Influence of bacterial concentration on crack self-healing of cement-based materials. Construction and Building Materials, 244, 118372. https://doi.org/10.1016/j.conbuildmat.2020.118372
  • Ruan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E. H., Chu, J., & Unluer, C. (2019). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176–188. https://doi.org/10.1016/j.cemconres.2018.10.018
  • Sharma, D., & Goyal, S. (2020). Effect of accelerated carbonation curing on near surface properties of concrete. European Journal of Environmental and Civil Engineering, 26(4), 1300–1322. https://doi.org/10.1080/19648189.2019.1707714
  • Sidiq, A., Gravina, R., & Giustozzi, F. (2019). Is concrete healing really efficient? A review. Construction and Building Materials, 205, 257–273. https://doi.org/10.1016/j.conbuildmat.2019.02.002
  • Sierra-Beltran, M. G., Jonkers, H. M., & Schlangen, E. (2014). Characterization of sustainable bio-based mortar for concrete repair. Construction and Building Materials, 67, 344–352. https://doi.org/10.1016/j.conbuildmat.2014.01.012
  • Sisomphon, K., Copuroglu, O., & Koenders, E. A. B. (2012). Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cement and Concrete Composites, 34(4), 566–574. https://doi.org/10.1016/j.cemconcomp.2012.01.005
  • Soh, C. K., & Bhalla, S. (2005). Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete. Smart Materials and Structures, 14(4), 671–684. https://doi.org/10.1088/0964-1726/14/4/026
  • Talakokula, V., Bhalla, S., & Gupta, A. (2014). Corrosion assessment of reinforced concrete structures based on equivalent structural parameters using electro-mechanical impedance technique. Journal of Intelligent Material Systems and Structures, 25(4), 484–500. https://doi.org/10.1177/1045389X13498317
  • Thomas, M. D. A. (2007). Optimizing the use of fly ash in concrete. Portland Cement Association, 24.
  • Tripathi, E., Anand, K., Goyal, S., & Reddy, M. S. (2019). Bacterial based admixed or spray treatment to improve properties of concrete. Sadhana - Academy Proceedings in Engineering Sciences, 44(1), 1–8. https://doi.org/10.1007/s12046-018-0999-3
  • Tsangouri, E., Aggelis, D. G., Van Tittelboom, K., De Belie, N., & Van Hemelrijck, D. (2013). Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation. TheScientificWorldJournal, 2013, 424560. https://doi.org/10.1155/2013/424560
  • Tsangouri, E., Karaiskos, G., Deraemaeker, A., Van Hemelrijck, D., & Aggelis, D. (2016). Assessment of Acoustic Emission localization accuracy on damaged and healed concrete. Construction and Building Materials, 129, 163–171. https://doi.org/10.1016/j.conbuildmat.2016.10.104
  • Vaezi, M., Zareei, S. A., & Jahadi, M. (2020). Recycled microbial mortar: Effects of bacterial concentration and calcium lactate content. Construction and Building Materials, 234, 117349. https://doi.org/10.1016/j.conbuildmat.2019.117349
  • Vahabi, A., Ramezanianpour, A. A., & Akbari Noghabi, K. (2015). A preliminary insight into the revolutionary new line in improving concrete properties using an indigenous bacterial strain Bacillus licheniformis AK01, as a healing agent. European Journal of Environmental and Civil Engineering, 19(5), 614–627. https://doi.org/10.1080/19648189.2014.960951
  • Van Tittelboom, K., Adesanya, K., Dubruel, P., Van Puyvelde, P., & De Belie, N. (2011). Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart Materials and Structures, 20(12), 125016. https://doi.org/10.1088/0964-1726/20/12/125016
  • Wang, J. Y., De Belie, N., & Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. Journal of Industrial Microbiology & Biotechnology, 39(4), 567–577. https://doi.org/10.1007/s10295-011-1037-1
  • Wang, J., Dewanckele, J., Cnudde, V., Van Vlierberghe, S., Verstraete, W., & De Belie, N. (2014). X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement and Concrete Composites, 53, 289–304. https://doi.org/10.1016/j.cemconcomp.2014.07.014
  • Wang, X., Huang, Y., Huang, Y., Zhang, J., Fang, C., Yu, K., Chen, Q., Li, T., Han, R., Yang, Z., Xu, P., Liang, G., Su, D., Ding, X., Li, D., Han, N., & Xing, F. (2019). Laboratory and field study on the performance of microcapsule-based self-healing concrete in tunnel engineering. Construction and Building Materials, 220, 90–101. https://doi.org/10.1016/j.conbuildmat.2019.06.017
  • Wang, J., Mignon, A., Snoeck, D., Wiktor, V., Van Vliergerghe, S., Boon, N., & De Belie, N. (2015, October). Application of modified-alginate encapsulated carbonate producing bacteria in concrete: A promising strategy for crack self-healing. Frontiers in Microbiology, 6, 1088–1014. https://doi.org/10.3389/fmicb.2015.01088
  • Wang, J. Y., Soens, H., Verstraete, W., & De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009
  • Wang, X. F., Yang, Z. H., Fang, C., Han, N. X., Zhu, G. M., Tang, J. N., & Xing, F. (2019). Evaluation of the mechanical performance recovery of self-healing cementitious materials – its methods and future development: A review. Construction and Building Materials, 212, 400–421. https://doi.org/10.1016/j.conbuildmat.2019.03.117
  • Wu, M., Hu, X., Zhang, Q., Xue, D., & Zhao, Y. (2019). Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Construction and Building Materials, 209, 631–643. https://doi.org/10.1016/j.conbuildmat.2019.03.181
  • Xu, G., & Shi, X. (2018). Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136(August 2017), 95–109. https://doi.org/10.1016/j.resconrec.2018.04.010
  • Xu, J., & Wang, X. (2018). Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Construction and Building Materials, 167, 1–14. https://doi.org/10.1016/j.conbuildmat.2018.02.020
  • Yang, Z., Hollar, J., He, X., & Shi, X. (2010). Laboratory assessment of a self-healing cementitious composite. Transportation Research Record: Journal of the Transportation Research Board, 2142(1), 9–17. https://doi.org/10.3141/2142-02
  • Yang, Y., Hu, Y., & Lu, Y. (2008). Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors (Basel, Switzerland), 8(1), 327–346. https://doi.org/10.3390/s8010327
  • Zamani, M., Nikafshar, S., Mousa, A., & Behnia, A. (2020). Bacteria encapsulation using synthesized polyurea for self-healing of cement paste. Construction and Building Materials, 249, 118556. https://doi.org/10.1016/j.conbuildmat.2020.118556
  • Zhang, J., Liu, Y., Feng, T., Zhou, M., Zhao, L., Zhou, A., & Li, Z. (2017). Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Construction and Building Materials, 148, 610–617. https://doi.org/10.1016/j.conbuildmat.2017.05.021
  • Zheng, T., Qian, C., & Su, Y. (2021). Influences of different calcium sources on the early age cracks of self-healing cementitious mortar. Biochemical Engineering Journal, 166, 107849. https://doi.org/10.1016/j.bej.2020.107849

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.