72
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effective poroelastic properties of N-layered composite sphere assemblage: An application to oolitic limestone

, , , , , & show all
Pages 1561-1579 | Received 29 Mar 2022, Accepted 01 Jun 2022, Published online: 20 Jun 2022

References

  • Alberola, N. D., & Benzarti, K. (1998). Modeling of the relationship between morphology and viscoelastic behavior of unidirectional fiber reinforced polymers. Polymer Engineering & Science, 38(3), 429–438. https://doi.org/10.1002/pen.10204
  • Azim, R. A. (2020). A hybrid simulation approach to evaluate stimulation micro-seismic events and production potential of fractured geothermal reservoirs. Petroleum Research, 5(2), 131–143. https://doi.org/10.1016/j.ptlrs.2020.04.003
  • Bary, B., & Béjaoui, S. (2006). Assessment of diffusive and mechanical properties of hardened cement pastes using a multi-coated sphere assemblage model. Cement and Concrete Research, 36(2), 245–258. https://doi.org/10.1016/j.cemconres.2005.07.007
  • Berryman, J. G. (1997). Generalization of Eshelby’s formula for a single ellipsoidal elastic inclusion to poroelasticity and thermoelasticity. Physical Review Letters, 79(6), 1142–1145. https://doi.org/10.1103/PhysRevLett.79.1142
  • Beurthey, S., & Zaoui, A. (2000). Structural morphology and relaxation spectra of viscoelastic heterogeneous materials. European Journal of Mechanics - A/Solids, 19(1), 1–16. https://doi.org/10.1016/S0997-7538(00)00157-1
  • Bornert, M., Hervé, E., Stolz, C., & Zaoui, A. (1994). Self-Consistent approaches and strain heterogeneities in two-phase elastoplastic materials. Applied Mechanics Review, 47(1), 66–76.
  • Chen, F., Giraud, A., Grgic, D., & Kalo, K. (2017). A composite sphere assemblage model for porous oolitic rocks: Application to thermal conductivity. Journal of Rock Mechanics and Geotechnical Engineering, 9(1), 54–61. https://doi.org/10.1016/j.jrmge.2016.06.012
  • Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27(4), 315–330. https://doi.org/10.1016/0022-5096(79)90032-2
  • Clifton, R. J., & Wang, J. J. (1991). Modeling of Poroelastic Effects in Hydraulic Fracturing [Paper presentation]. SPE-21871-MS https://doi.org/10.2118/21871-MS
  • Conil, N., Vitel, M., Plua, C., Vu, M. N., Seyedi, D., & Armand, G. (2020). In Situ Investigation of the THM Behavior of the Callovo-Oxfordian Claystone. Rock Mechanics and Rock Engineering, 53(6), 2747–2769. https://doi.org/10.1007/s00603-020-02073-8
  • Coussy, O. (2004). Poromechanics. Wiley.
  • Dormieux, L., Kondo, D., & Ulm, F. J. (2006). Microporomechanics. John Wiley and Sons.
  • Eshelby, J. D. (1956). The continuum theory of lattice defects. Prog. Solid State Phys, 3, 79–114.
  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problem. Pro. Roy. Soci. Lon, 241, 376–396.
  • Fabre, D., & Gustkiewicz, J. (1997). Poroelastic properties of limestones and sandstones under hydrostatic conditions. International Journal of Rock Mechanics and Mining Sciences, 34(1), 127–134. https://doi.org/10.1016/S1365-1609(97)80038-X
  • Fen-Chong, T., Hervé, E., & Zaoui, A. (1999). Micromechanical modelling of intracellular pressure-induced viscoelastic shrinkage of foams: application to expanded polystyrene. European Journal of Mechanics - A/Solids, 18(2), 201–218. https://doi.org/10.1016/S0997-7538(99)80012-6
  • Ghabezloo, S., Sulem, J., Guédon, S., & Martineau, F. (2009). Effective stress law for the permeability of a limestone. International Journal of Rock Mechanics and Mining Sciences, 46(2), 297–306. https://doi.org/10.1016/j.ijrmms.2008.05.006
  • Giraud, A., Nguyen, N. B., & Grgic, D. (2012). Effective poroelastic coefficients of isotropic oolitic rocks with micro and meso porosities. International Journal of Engineering Science, 58, 57–77. https://doi.org/10.1016/j.ijengsci.2012.03.025
  • Gourri, A. (1991). [ Contribution à l’étude de l’influence des conditions de drainage sur les propriétés poroélastiques des roches carbonatées. PhD ]. [thesis]. Université Grenoble 1.
  • Grgic, D. (2001). Modélisation du comportement à court et à long terme des roches de la formation ferrif`ere lorraine. PhD thesis, I.N.P.L - Nancy.
  • Han, S., Cheng, Y., Gao, Q., Yan, C., Han, Z., & Zhang, J. (2019). Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo-poroelastic effects. Energy Science & Engineering, 7(5), 1705–1726. https://doi.org/10.1002/ese3.386
  • Hart, D. J., & Wang, H. F. (1995). Laboratory measurements of a complete set of poroelastic moduli for berea sandstone and indiana limestone. Journal of Geophysical Research: Solid Earth, 100(B9), 17741–17751. https://doi.org/10.1029/95JB01242
  • Hashin, Z. (1962). The elastic moduli of heterogeneous materials. Journal of Applied Mechanics, 29(1), 143–150. https://doi.org/10.1115/1.3636446
  • Hashin, Z. (1991). Thermoelastic properties of particulate composites with imperfect interface. Journal of the Mechanics and Physics of Solids, 39(6), 745–762. https://doi.org/10.1016/0022-5096(91)90023-H
  • Hashin, Z., & Monteiro, P. J. M. (2002). An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cement and Concrete Research, 32(8), 1291–1300. https://doi.org/10.1016/S0008-8846(02)00792-5
  • Hervé, E. (2002). Thermal and thermoelastic behaviour of multiply coated inclusion-reinforced composites. International Journal of Solids and Structures, 39, 1041–1058.
  • Hervé, E., & Zaoui, A. (1993). n-layered inclusion-based micromechanical modelling. International Journal of Engineering Science, 31(1), 1–10. https://doi.org/10.1016/0020-7225(93)90059-4
  • Hervé, E., Dendievel, R., & Bonnet, G. (1995). Steady-state power-law creep in ‘‘inclusion matrix’’ composite materials. Acta Metallurgica et Materialia, 43(11), 4027–4034. https://doi.org/10.1016/0956-7151(95)00100-A
  • Huang, J., & Ghassemi, A. (2015). A poroelastic model for evolution of fractured reservoirs during gas production. Journal of Petroleum Science and Engineering, 135, 626–644. https://doi.org/10.1016/j.petrol.2015.10.007
  • Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). A Fundamentals of rock mechanics. 4th ed Wiley, Blackwell.
  • Kim, J. M. (2004). Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media. Geosciences Journal, 8(3), 291–300. https://doi.org/10.1007/BF02910248
  • Levin, V. M., & Alvarez-Tostado, J. M. (2003). Eshelby’s formula for an ellipsoidal elastic inclusion in anisotropic poroelasticity and thermoelasticity. International Journal of Fracture, 119/120(4-2), L77–82. https://doi.org/10.1023/A:1024907500335
  • Li, G., Zhao, Y., & Pang, S. S. (1999). Four-phase sphere modeling of effective bulk modulus of concrete. Cement and Concrete Research, 29(6), 839–845. https://doi.org/10.1016/S0008-8846(99)00040-X
  • Lion, M. (2004). Influence de la température sur le comportement poromécanique ou hydraulique d’une roche carbonatée et d’un mortier. Etudes expérimentales. PhD thesis, Université des Sciences et Technologies de Lille.
  • Lion, M., Ledésert, B., Skoczylas, F., Recourt, P., & Dubois, T. (2004). How does micropetrography help us to understand th epermeability and poromechanical behaviour of a rock. Terra Nova, 16(6), 351–357. https://doi.org/10.1111/j.1365-3121.2004.00573.x
  • Lion, M., Skoczylas, F., & Ledésert, B. (2004). Determination of the main hydraulic and poro-elastic properties of a limestone from bourgogne, france. International Journal of Rock Mechanics and Mining Sciences, 41(6), 915–925. https://doi.org/10.1016/j.ijrmms.2004.02.005
  • Mari, J. L., & Yven, B. (2014). 3D high resolution seismic model with depth: A relevant guide for Andra deep geological repository project. Marine and Petroleum Geology, 53, 133–153. https://doi.org/10.1016/j.marpetgeo.2013.10.014
  • Nguyen, N. B. (2010). [ Modélisation micromécanique des roches poreuses. Application aux calcaires oolitiques. PhD ]. [Thesis]. Institut National Polytechnique de Lorraine.
  • Nguyen, N. B., Giraud, A., & Grgic, D. (2011). A composite sphere assemblage model for porous oolitic rocks. International Journal of Rock Mechanics and Mining Sciences, 48(6), 909–921. https://doi.org/10.1016/j.ijrmms.2011.05.003
  • Nguyen, T. K., Pouya, A., & Rohme, J. (2015). Integrating damage zone heterogeneities based on stochastic realizations of fracture networks for fault stability analysis. International Journal of Rock Mechanics and Mining Sciences, 80, 325–336. https://doi.org/10.1016/j.ijrmms.2015.10.005
  • Nguyen-Sy, T., Tang, A. M., To, Q. D., & Vu, M. N. (2019). A model to predict the elastic properties of gas hydrate-bearing sediments. Journal of Applied Geophysics, 169, 154–164. https://doi.org/10.1016/j.jappgeo.2019.05.003
  • Nguyen-Sy, T., To, Q. D., Vu, M. N., Nguyen, T. D., & Nguyen, T. T. (2020). Study the elastic properties and the anisotropy of rocks using different machine learning methods. Geophysical Prospecting, 68(8), 2557–2578. https://doi.org/10.1111/1365-2478.13011
  • Nguyen-Sy, T., To, Q. D., Vu, M. N., Nguyen, T. D., & Nguyen, T. T. (2021). Predicting the electrical conductivity of brine-saturated rocks using machine learning methods. Journal of Applied Geophysics, 184, 104238. https://doi.org/10.1016/j.jappgeo.2020.104238
  • Nguyen-Sy, T., Vu, M. N., To, Q. D., Thai, M. Q., & Nguyen-Thoi, T. (2019). On the effective viscoelastic properties of a fractured rock mass. Journal of Applied Geophysics, 169, 125–133. https://doi.org/10.1016/j.jappgeo.2019.06.012
  • Nguyen-Sy, T., Vu, M. N., Tran-Le, A. D., Tran, B. V., Nguyen, T. T. N., & Nguyen, T. T. (2021). Studying petrophysical properties of micritic limestones using machine learning methods. Journal of Applied Geophysics, 184, 104226. https://doi.org/10.1016/j.jappgeo.2020.104226
  • Norris, A. (1992). On the correspondence between poroelasticity and thermoelasticity. Journal of Applied Physics, 71(3), 1138–1141. https://doi.org/10.1063/1.351278
  • Norris, A. N. (1985). A differential scheme for the effective moduli of composites. Mechanics of Materials, 4(1), 1–16. https://doi.org/10.1016/0167-6636(85)90002-X
  • Pham, D. C. (2018). Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems. Zeitschrift Für Angewandte Mathematik Und Physik, 69(1), 13. https://doi.org/10.1007/s00033-017-0905-6
  • Pham, D. C., & Nguyen, T. K. (2019). The microscopic conduction fields in the multi-coated sphere composites under the imposed macroscopic gradient and flux fields. Zeitschrift Für Angewandte Mathematik Und Physik, 70(1), 24. https://doi.org/10.1007/s00033-018-1062-2
  • Plua, C., Vu, M. N., Armand, G., Rutqvist, J., Birkholzer, J., Xu, H., Guo, R., Thatcher, K. E., Bond, A. E., Wang, W., Nagel, T., Shao, H., & Kolditz, O. (2021). A reliable numerical analysis for large-scale modelling of a high-level radioactive waste repository in the Callovo-Oxfordian claystone. International Journal of Rock Mechanics and Mining Sciences, 140, 104574. https://doi.org/10.1016/j.ijrmms.2020.104574
  • Plua, C., Vu, M. N., Seyedi, D., & Armand, G. (2021). Effects of inherent spatial variability of rock properties on the thermos-hydro-mechanical responses of a high-level radioactive waste geological disposal. International Journal of Rock Mechanics and Mining Sciences, 145, 104682. https://doi.org/10.1016/j.ijrmms.2021.104682
  • Ramesh, G., Sotelino, E. D., & Chen, W. F. (1996). Effect of transition zone on elastic moduli of concrete materials. Cement and Concrete Research, 26(4), 611–622. https://doi.org/10.1016/0008-8846(96)00016-6
  • Seyedi, D., Vu, M. N., & Pouya, A. (2015). A two-scale hydromechanical model for fault zones accounting for their heterogeneous structure. Computers and Geotechnics, 68, 8–16. https://doi.org/10.1016/j.compgeo.2015.03.001
  • Shao, J. F. (1998). Poroelastic behaviour of brittle rock materials with anisotropic damage. Mechanics of Materials, 30(1), 41–53. https://doi.org/10.1016/S0167-6636(98)00025-8
  • Tran, N. H., Do, D. P., Vu, M. N., Nguyen, T. T. N., Pham, D. T., & Trieu, H. T. (2022). Combined effect of anisotropy and uncertainty on the safe mud pressure window of horizontal wellbore drilled in anisotropic saturated rock. International Journal of Rock Mechanics and Mining Sciences, 152, 105061. https://doi.org/10.1016/j.ijrmms.2022.105061
  • Zhao, J. J. (2021). [ Modélisation micromécanique des roches argileuses initialement anisotropes avec la prise en compte des effets de saturation ]. [PhD thesis]. Université de Lille.
  • Zhao, J. J., Shen, W. Q., Shao, J. F., Liu, Z. B., & Vu, M. N. (2022). A constitutive model for anisotropic clay-rich rocks considering micro-structural composition. International Journal of Rock Mechanics and Mining Sciences, 151, 105029. https://doi.org/10.1016/j.ijrmms.2021.105029
  • Zhao, X. H., & Chen, W. F. (1998). The effective elastic moduli of concrete and composite materials. Composites Part B: Engineering, 29(1), 31–40. https://doi.org/10.1016/S1359-8368(97)80861-X
  • Zimmerman, R. W. (1996). Effective conductivity of a two-dimensional medium containing elliptical inhomogeneities. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452:1713–1727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.