135
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Bayesian updating for predictions of delayed strains of large concrete structures: influence of prior distribution

, , , , , & show all
Pages 1763-1795 | Received 14 Jan 2022, Accepted 21 Jun 2022, Published online: 06 Jul 2022

References

  • Andrieu, C., & Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343–373. https://doi.org/10.1007/s11222-008-9110-y
  • Bazant, Z. P., & Chern, J.-C. (1984). Bayesian statistical prediction of concrete creep and shrinkage. ACI Journal Proceedings, 81(4). https://doi.org/10.14359/10686
  • Bazant, Z. P., & Chern, J. C. (1985). Concrete creep at variable humidity: Constitutive law and mechanisms. Materials and Structures, 18(1), 1–20. https://doi.org/10.1007/BF02473360
  • Berveiller, M., Pape, Y. L., Sudret, B., & Perrin, F. (2012). Updating the long-term creep strains in concrete containment vessels by using Markov chain Monte Carlo simulation and Polynomial Chaos Expansions. Structure and Infrastructure Engineering, 8(5), 425–440. https://doi.org/10.1080/15732479.2010.539057
  • Berveiller, M., Sudret, B., & Lemaire, M. (2006). Stochastic finite element: A non intrusive approach by regression. European Journal of Computational Mechanics, 15(1–3), 81–92. https://doi.org/10.3166/remn.15.81-92
  • Birolleau, A., Poëtte, G., & Lucor, D. (2014). Adaptive Bayesian inference for discontinuous inverse problems, application to hyperbolic conservation laws. Communications in Computational Physics, 16(1), 1–34. https://doi.org/10.4208/cicp.240113.071113a
  • Blatman, G., & Sudret, B. (2011a). Adaptive sparse polynomial chaos expansion based on Least Angle Regression. Journal of Computational Physics, 230(6), 2345–2367. https://doi.org/10.1016/j.jcp.2010.12.021
  • Blatman, G., & Sudret, B. (2011b). Principal component analysis and Least Angle Regression in spectral stochastic finite element analysis. In Applications of statistics and probability in civil engineering (pp. 669–676). CRC Press. https://doi.org/10.1201/b11332-101
  • Blatman, G., & Sudret, B. (2014). Sparse polynomial chaos expansions of vector-valued response quantities. In Safety, reliability, risk and life-cycle performance of structures and infrastructures (pp. 3245–3252). CRC Press. https://doi.org/10.1201/b16387-469
  • Bouhjiti, D. E.-M., Baroth, J., Dufour, F., Michel-Ponnelle, S., & Masson, B. (2020). Stochastic finite elements analysis of large concrete structures’ serviceability under thermo-hydro-mechanical loads - Case of nuclear containment buildings. Nuclear Engineering and Design, 370, 110800. https://doi.org/10.1016/j.nucengdes.2020.110800
  • Bouhjiti, D. E.-M., Boucher, M., Briffaut, M., Dufour, F., Baroth, J., & Masson, B. (2018). Accounting for realistic Thermo-Hydro-Mechanical boundary conditions whilst modeling the ageing of concrete in nuclear containment buildings: Model validation and sensitivity analysis. Engineering Structures, 166, 314–338. https://doi.org/10.1016/j.engstruct.2018.03.015
  • Bouhjiti, D. E.-M., Demri, N., Huguet-Aguilera, M., Erlicher, S., & Baroth, J. (2021). Probabilistic analysis of the crack spacing in reinforced concrete members under tensile loads - numerical investigation of size effects. European Journal of Environmental and Civil Engineering, 1–24. https://doi.org/10.1080/19648189.2021.1908914
  • Brezis, H. (2010). Functional analysis, Sobolev spaces and partial differential equations. Springer. https://doi.org/10.1007/978-0-387-70914-7
  • Buffo-Lacarrière, L., Sellier, A., & Kolani, B. (2014). Application of thermo-hydro-chemo-mechanical model for early age behaviour of concrete to experimental massive reinforced structures with strain-restraining system. European Journal of Environmental and Civil Engineering, 18(7), 814–827. https://doi.org/10.1080/19648189.2014.896754
  • Charpin, L., Niepceron, J., Corbin, M., Masson, B., Mathieu, J.-P., Haelewyn, J., Hamon, F., Åhs, M., Aparicio, S., Asali, M., Capra, B., Azenha, M., Bouhjiti, D. E.-M., Calonius, K., Chu, M., Herrman, N., Huang, X., Jiménez, S., Mazars, J., … Torrenti, J.-M. (2021). Ageing and air leakage assessment of a nuclear reactor containment mock-up: VERCORS 2nd benchmark. Nuclear Engineering and Design, 377, 111136. https://doi.org/10.1016/j.nucengdes.2021.111136. https://www.sciencedirect.com/science/article/pii/S0029549321000881
  • De Rocquigny, E., Devictor, N., & Tarantola, S. (2008). Uncertainty in industrial practice. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470770733
  • Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32(2), 407–499. https://doi.org/10.1214/009053604000000067[Database][Mismatch
  • Electricité de France. (n.d.). Code Aster: Finite element analysis of structures and thermomechanics for studies and research (1989–2021). www.code-aster.org
  • Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2012). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317–339. https://doi.org/10.1051/m2an/2011045
  • Ghanem, R., & Spanos, P. (1991). Stochastic finite elements - A spectral approach. Springer Verlag. https://doi.org/10.1007/978-1-4612-3094-6
  • Goodman, J., & Weare, J. (2010). Ensemble samplers with affine invariance. Communications in Applied Mathematics and Computational Science, 5(1), 65–80. https://doi.org/10.2140/camcos.2010.5.65
  • Granger, L. (1995). Comportement différé du béton dans les enceintes de centrales nucléaires: Analyse et modélisation [Ph.D. thesis]. École nationale des ponts et chaussées http://www.theses.fr/1995ENPC9510
  • Guermond, J.-L., & Pasquetti, R. (2013). A correction technique for the dispersive effects of mass lumping for transport problems. Computer Methods in Applied Mechanics and Engineering, 253, 186–198. https://doi.org/10.1016/j.cma.2012.08.011. https://www.sciencedirect.com/science/article/pii/S0045782512002630
  • Guo, X., Dias, D., Carvajal, C., Peyras, L., & Breul, P. (2018). Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion. Engineering Structures, 174, 295–307. https://doi.org/10.1016/j.engstruct.2018.07.053. http://www.sciencedirect.com/science/article/pii/S014102961830511X
  • Han, B., Xiang, T.-Y., & Xie, H.-B. (2017). A Bayesian inference framework for predicting the long-term deflection of concrete structures caused by creep and shrinkage. Engineering Structures, 142, 46–55. https://doi.org/10.1016/j.engstruct.2017.03.055. https://www.sciencedirect.com/science/article/pii/S0141029616311282
  • Hariri-Ardebili, M. A., & Sudret, B. (2020). Polynomial chaos expansion for uncertainty quantification of dam engineering problems. Engineering Structures, 203, 109631. https://doi.org/10.1016/j.engstruct.2019.109631. http://www.sciencedirect.com/science/article/pii/S0141029619324344
  • Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97
  • Jason, L., Pijaudier-Cabot, G., Ghavamian, S., & Huerta, A. (2007). Hydraulic behaviour of a representative structural volume for confinement buildings. Nuclear Engineering and Design, 237(12–13), 1259–1274. https://doi.org/10.1016/j.nucengdes.2006.09.035
  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630. https://doi.org/10.1103/PhysRev.106.620
  • Kaipio, J., & Somersalo, E. (2005). Statistical and computational inverse problems. Springer. https://doi.org/10.1007/b138659
  • Kiureghian, A. D., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural Safety, 31(2), 105–112. https://doi.org/10.1016/j.strusafe.2008.06.020. http://www.sciencedirect.com/science/article/pii/S0167473008000556
  • Lataniotis, C., Marelli, S., & Sudret, B. (2020). Extending classical surrogate modeling to high dimensions through supervised dimensionality reduction: A data-driven approach. International Journal for Uncertainty Quantification, 10(1), 55–82. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020031935
  • Li, J., & Marzouk, Y. M. (2014). Adaptive construction of surrogates for the Bayesian solution of inverse problems. SIAM Journal on Scientific Computing, 36(3), A1163–A1186. https://doi.org/10.1137/130938189
  • Lu, F., Morzfeld, M., Tu, X., & Chorin, A. J. (2015). Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems. Journal of Computational Physics, 282, 138–147. https://doi.org/10.1016/j.jcp.2014.11.010
  • Lüthen, N., Marelli, S., & Sudret, B. (2021). Sparse polynomial chaos expansions: Literature survey and benchmark. SIAM/ASA Journal on Uncertainty Quantification, 9(2), 593–649. https://doi.org/10.1137/20M1315774
  • Marelli, S., & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in Matlab. Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, UK. pp. 2554–2563.
  • Marzouk, Y., & Xiu, D. (2009). A stochastic collocation approach to Bayesian inference in inverse problems. Communications in Computational Physics, 6(4), 826–847. https://doi.org/10.4208/cicp.2009.v6.p826
  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics. 21(6), 1087–1092. https://doi.org/10.2172/4390578
  • Nagel, J. B., Rieckermann, J., & Sudret, B. (2020). Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation. Reliability Engineering & System Safety, 195, 106737. https://www.sciencedirect.com/science/article/pii/S0951832019301747 https://doi.org/10.1016/j.ress.2019.106737
  • Neal, R. M. (2011). MCMC using Hamiltonian dynamics (Ch. 5, pp. 13–162). Chapman & Hall - CRC Press.
  • Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods, society for applied mathematics (Philadelphia ed.). https://doi.org/10.1137/1.9781611970081
  • O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., Oakley, J. E., & Rakow, T. (2006). Uncertain judgements: Eliciting experts’ probabilities. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470033312
  • Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076. https://doi.org/10.1214/aoms/1177704472
  • Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods. 2nd ed. Springer Series in Statistics. https://doi.org/10.1007/978-1-4757-4145-2
  • Rossat, D., Baroth, J., Briffaut, M., & Dufour, F. (2022a). Bayesian inversion using adaptive Polynomial Chaos Kriging within Subset Simulation. Journal of Computational Physics, 455, 110986. https://doi.org/10.1016/j.jcp.2022.110986
  • Rossat, D., Baroth, J., Briffaut, M., Dufour, F., Masson, B., Monteil, A., & Michel-Ponnelle, S. (2022b). Bayesian updating for nuclear containment buildings using both mechanical and hydraulic monitoring data. Engineering Structures, 262, 114294. https://doi.org/10.1016/j.engstruct.2022.114294. https://www.sciencedirect.com/science/article/pii/S0141029622004175
  • Rossat, D., Bouhjiti, D. E.-M., Baroth, J., Briffaut, M., Dufour, F., Monteil, A., Masson, B., & Michel-Ponnelle, S. (2021). A Bayesian strategy for forecasting the leakage rate of concrete containment buildings - Application to nuclear containment buildings. Nuclear Engineering and Design, 378, 111184. https://doi.org/10.1016/j.nucengdes.2021.111184. https://www.sciencedirect.com/science/article/pii/S0029549321001369
  • Sellier, A., & Millard, A. (2014). Weakest link and localisation WL2: A method to conciliate probabilistic and energetic scale effects in numerical models. European Journal of Environmental and Civil Engineering, 18(10), 1–1191. https://doi.org/10.1080/19648189.2014.906368
  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall.
  • Smith, R. C. (2013). Uncertainty quantification: Theory, implementation, and applications. Society for Industrial and Applied Mathematics.
  • Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1), 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6. http://www.sciencedirect.com/science/article/pii/S0378475400002706
  • Sousa, H., Santos, L. O., & Chryssanthopoulos, M. (2019). Quantifying monitoring requirements for predicting creep deformations through Bayesian updating methods. Structural Safety, 76, 40–50. https://doi.org/10.1016/j.strusafe.2018.06.002. https://www.sciencedirect.com/science/article/pii/S0167473017301017
  • Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7), 964–979. https://doi.org/10.1016/j.ress.2007.04.002. http://www.sciencedirect.com/science/article/pii/S0951832007001329
  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898717921
  • Vapnik, V. N. (1995). The nature of statistical learning theory. Springer Verlag. https://doi.org/10.1007/978-1-4757-3264-1
  • Wagner, P.-R., Fahrni, R., Klippel, M., Frangi, A., & Sudret, B. (2020). Bayesian calibration and sensitivity analysis of heat transfer models for fire insulation panels. Engineering Structures, 205, 110063. https://doi.org/10.1016/j.engstruct.2019.110063. http://www.sciencedirect.com/science/article/pii/S0141029619318693
  • Xiu, D., & Karniadakis, G. E. (2002). The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24(2), 619–644. https://doi.org/10.1137/S1064827501387826
  • Zhang, Y., Chouinard, L. E., Conciatori, D., & Power, G. J. (2021). Bayesian procedures for updating deterioration space-time models for optimizing the utility of concrete structures. Engineering Structures, 228, 111522. https://doi.org/10.1016/j.engstruct.2020.111522

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.