262
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical investigation of the mechanical properties of low cement thin boards reinforced by polypropylene and fiberglass mesh

, , &
Pages 1829-1852 | Received 27 Jan 2022, Accepted 04 Jul 2022, Published online: 20 Jul 2022

References

  • Abaqus, U. S. M., & Manuals, E. U. S. (2003). Version 6.3. Hibbitt, Karlsson & Sorensen. Inc.
  • Aggarwal, L. K., Thapliyal, P. C., & Karade, S. R. (2007). Properties of polymer-modified mortars using epoxy and acrylic emulsions. Construction and Building Materials, 21(2), 379–383. https://doi.org/10.1016/j.conbuildmat.2005.08.007
  • Akhavan, A., Catchmark, J., & Rajabipour, F. (2017). Ductility enhancement of autoclaved cellulose fiber reinforced cement boards manufactured using a laboratory method simulating the Hatschek process. Construction and Building Materials, 135, 251–259. https://doi.org/10.1016/j.conbuildmat.2017.01.001
  • American Society of Civil Engineers. (2017, June). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers.
  • Ashori, A., Tabarsa, T., & Valizadeh, I. (2011). Fiber reinforced cement boards made from recycled newsprint paper. Materials Science and Engineering: A, 528(25–26), 7801–7804. https://doi.org/10.1016/j.msea.2011.07.005
  • ASTM International. (2014). Standard test methods for evaluating properties of wood-base fiber and particle panel materials.
  • Bagheri, A., Jamali, A., Pourmir, M., & Zanganeh, H. (2019). The influence of curing time on restrained shrinkage cracking of concrete with shrinkage reducing admixture. Advances in Civil Engineering Materials, 8(1), 20190100–20190610. https://doi.org/10.1520/ACEM20190100
  • Balaguru, P. N., & Shah, S. P. (1992). Fiber-reinforced cement composites. Mc Graw Hill International Editions.
  • Bayat, A., Liaghat, G., Sabouri, H., Ashkezari, G. D., Pedram, E., Taghizadeh, S. A., Khan, M. K., & Razmkhah, O. (2019). Experimental investigation on the quasi-static mechanical behavior of autoclaved aerated concrete insulated sandwich panels. Journal of Sandwich Structures & Materials, https://doi.org/10.1177/1099636219857633.
  • Bentur, A., & Mindess, S. (2006). Fibre reinforced cementitious composites. CRC Press.
  • Bentz, D. P., Ferraris, C. F., Jones, S. Z., Lootens, D., & Zunino, F. (2017). Limestone and silica powder replacements for cement: Early-age performance. Cement & Concrete Composites, 78, 43–56.
  • Bernard, E. S. (2013). Development of a 1200 mm diameter round panel test for post-crack assessment of fiber reinforced concrete. Advances in Civil Engineering Materials, 2(1), 20120021–20120471. https://doi.org/10.1520/ACEM20120021
  • Bernard, E. S. (2020). Estimating residual flexural strength of fiber-reinforced concrete using the ASTM C1550 panel test. Advances in Civil Engineering Materials, 9(1), 20190098–20190492. https://doi.org/10.1520/ACEM20190098
  • Cavdar, A. D., Yel, H., Boran, S., & Pesman, E. (2017). Cement type composite panels manufactured using paper mill sludge as filler. Construction and Building Materials, 142, 410–416. https://doi.org/10.1016/j.conbuildmat.2017.03.099
  • Chamis, C. C. (1974). Analysis of three-point-bend test for materials with unequal tension and compression properties (No. NASA-TN-D-7572).
  • Chira, A., Kumar, A., Vlach, T., Laiblová, L., & Hajek, P. (2016). Textile-reinforced concrete facade panels with rigid foam core prisms. Journal of Sandwich Structures & Materials, 18(2), 200–214. https://doi.org/10.1177/1099636215613488
  • Ehsani, A., Nili, M., & Shaabani, K. (2017). Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash. KSCE Journal of Civil Engineering, 21(5), 1854–1865. https://doi.org/10.1007/s12205-016-0853-2
  • ENB. (2012). Fibre-cement flat sheets-product specification and test methods. Br. Stand. Inst.
  • Ganeshalingam, R., Paramasivam, P., & Nathan, G. K. (1981). An evaluation of theories and a design method of fibre cement composites. International Journal of Cement Composites and Lightweight Concrete, 3(2), 103–114. https://doi.org/10.1016/0262-5075(81)90004-X
  • Gong, A., & Harichandran, R. S. (2012). Wood-cement particleboard: Impact behavior and potential application in crash barriers. Journal of Materials in Civil Engineering, 24(1), 134–140. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000363
  • Gopinath, S., Gopal, R., & Lavanya, E. (2021). Bending properties of textile reinforced concrete sandwich beams with gypsum and calcium silicate core. Journal of Sandwich Structures & Materials, 23(8), 3558–3573. https://doi.org/10.1177/1099636220935565
  • Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773–781. https://doi.org/10.1016/0008-8846(76)90007-7
  • Hossain, M. Z., & Awal, A. A. (2011). Flexural response of hybrid carbon fiber thin cement composites. Construction and Building Materials, 25(2), 670–677. https://doi.org/10.1016/j.conbuildmat.2010.07.022
  • Hosseini, P., Yavari, A., Lotfi, H., Kouhi Anbaran, M. R., Khaksari, Y., & Famili, H. (2020). Properties of nanosilica-reinforced green architectural cement composites incorporating ground granulated blast furnace slag with low activity. European Journal of Environmental and Civil Engineering, 24(12), 1901–1920. https://doi.org/10.1080/19648189.2018.1492973
  • Ikai, S., Reichert, J. R., Rodrigues, A. V., & Zampieri, V. A. (2010). Asbestos-free technology with new high toughness polypropylene (PP) fibers in air-cured Hatschek process. Construction and Building Materials, 24(2), 171–180. https://doi.org/10.1016/j.conbuildmat.2009.06.019
  • Jamshidi, M., Pakravan, H. R., & Pacheco-Torgal, F. (2013). Assessment of the durability performance of fiber-cement sheets. Journal of Materials in Civil Engineering, 6(25), 819–823, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000637
  • Karam, G. N., & Gibson, L. J. (1994). Evaluation of commercial wood-cement composites for sandwich-panel facing. Journal of Materials in Civil Engineering, 6(1), 100–116. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:1(100)
  • Khorami, M., & Ganjian, E. (2013). The effect of limestone powder, silica fume and fibre content on flexural behaviour of cement composite reinforced by waste Kraft pulp. Construction and Building Materials, 46, 142–149. https://doi.org/10.1016/j.conbuildmat.2013.03.099
  • Khorami, M., Ganjian, E., & Srivastav, A. (2016). Feasibility study on production of fiber cement board using waste kraft pulp in corporation with polypropylene and acrylic fibers. Materials Today: Proceedings, 3(2), 376–380.
  • Khorami, M., Ganjian, E., Mortazavi, A., Saidani, M., Olubanwo, A., & Gand, A. (2017). Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibres. Construction and Building Materials, 152, 746–755. https://doi.org/10.1016/j.conbuildmat.2017.07.061
  • Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892–900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  • Lee, N. K., Kim, E. M., & Lee, H. K. (2016). Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Construction and Building Materials, 113, 264–272. https://doi.org/10.1016/j.conbuildmat.2016.03.055
  • Li, L. G., Chu, S. H., Zeng, K. L., Zhu, J., & Kwan, A. K. H. (2018). Roles of water film thickness and fibre factor in workability of polypropylene fibre reinforced mortar. Cement and Concrete Composites, 93, 196–204. https://doi.org/10.1016/j.cemconcomp.2018.07.014
  • Lima, P. R. L., Barros, J. A., Santos, D. J., Fontes, C. M., Lima, J. M. F., & Toledo Filho, R. (2019). Experimental and numerical analysis of short sisal fiber-cement composites produced with recycled matrix. European Journal of Environmental and Civil Engineering, 23(1), 70–84. https://doi.org/10.1080/19648189.2016.1271357
  • Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4
  • Meng, W., & Khayat, K. H. (2016). Experimental and numerical studies on flexural behavior of ultrahigh-performance concrete panels reinforced with embedded glass fiber-reinforced polymer grids. Transportation Research Record: Journal of the Transportation Research Board, 2592(1), 38–44. https://doi.org/10.3141/2592-05
  • Meng, W., Khayat, K. H., & Bao, Y. (2018). Flexural behaviors of fiber-reinforced polymer fabric reinforced ultra-high-performance concrete panels. Cement and Concrete Composites, 93, 43–53. https://doi.org/10.1016/j.cemconcomp.2018.06.012
  • Meng, W., Lunkad, P., Kumar, A., & Khayat, K. (2016). Influence of silica fume and polycarboxylate ether dispersant on hydration mechanisms of cement. The Journal of Physical Chemistry C, 120(47), 26814–26823. https://doi.org/10.1021/acs.jpcc.6b08121
  • Metelli, G., Bettini, N., & Plizzari, G. (2011). Experimental and numerical studies on the behaviour of concrete sandwich panels. European Journal of Environmental and Civil Engineering, 15(10), 1465–1481. https://doi.org/10.1080/19648189.2011.9723354
  • Mohebbi, S., Mirghaderi, S. R., Farahbod, F., Sabbagh, A. B., & Torabian, S. (2016). Experiments on seismic behaviour of steel sheathed cold-formed steel shear walls cladded by gypsum and fiber cement boards. Thin-Walled Structures, 104, 238–247. https://doi.org/10.1016/j.tws.2016.03.015
  • Muller, A. C. A., Scrivener, K. L., Skibsted, J., Gajewicz, A. M., & McDonald, P. J. (2015). Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cement and Concrete Research, 74, 116–125. https://doi.org/10.1016/j.cemconres.2015.04.005
  • Newman, J., & Choo, B. S. (Eds.). (2003). Advanced concrete technology set. Elsevier.
  • Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927–933. https://doi.org/10.1016/j.conbuildmat.2009.11.025
  • Pavía, S., & Aly, M. (2019). Sustainable, hydraulic-lime-limestone binders for construction. Advances in Civil Engineering Materials, 8(3), 20180124–20180254. https://doi.org/10.1520/ACEM20180124
  • Pokhrel, M., & Bandelt, M. J. (2019). Plastic hinge behavior and rotation capacity in reinforced ductile concrete flexural members. Engineering Structures, 200, 109699. https://doi.org/10.1016/j.engstruct.2019.109699
  • Puerto Suárez, J. D., Lizarazo-Marriaga, J., & Hernández Guarín, G. N. (2020). Application of nanosilica particles under limited dispersal conditions in cement-based paste and mortar mixtures. European Journal of Environmental and Civil Engineering, 24(8), 1206–1218. https://doi.org/10.1080/19648189.2018.1455610
  • Ramezanianpour, A. A. (2014). Cement replacement materials. Properties, Durability, Sustainability. Springer, 1-46, https://doi.org/10.1007/978-3-642-36721-2.
  • Saunders, A., & Davidson, E. (2014, January). Cement Boards 101. Glob Cement Mag, 32–38.
  • Sen, B., Saha, A., & Saha, R. (2021). Experimental investigation on assessment of lateral strength of earthen wall blocks in adobe houses. Asian Journal of Civil Engineering, 22(4), 727–749. https://doi.org/10.1007/s42107-020-00343-y
  • Sengupta, N., Roy, S., & Guha, H. (2018). Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India. Asian Journal of Civil Engineering, 19(2), 139–156. https://doi.org/10.1007/s42107-018-0013-8
  • Shaheen, Y. B., Etman, Z. A., & Gomaa, O. (2019). Structural behavior of thin ferrocement plates with and without stiffeners subjected to compression loading. Asian Journal of Civil Engineering, 20(2), 237–260. https://doi.org/10.1007/s42107-018-0101-9
  • Shao, Y., & Billington, S. L. (2020). Flexural performance of steel-reinforced engineered cementitious composites with different reinforcing ratios and steel types. Construction and Building Materials, 231, 117159. https://doi.org/10.1016/j.conbuildmat.2019.117159
  • Sharman, W. R., & Vautier, B. P. (1986). Accelerated durability testing of autoclaved woodfibre-reinforced cement-sheet composites. Durability of Building Materials, 3(3), 255–275.
  • Soroushian, P., & Marikunte, S. (1992). Moisture effects on flexural performance of wood fiber-cement composites. Journal of Materials in Civil Engineering, 4(3), 275–291. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:3(275)
  • Tabatabaiefar, H. R., Mansoury, B., Khadivi Zand, M. J., & Potter, D. (2017). Mechanical properties of sandwich panels constructed from polystyrene/cement mixed cores and thin cement sheet facings. Journal of Sandwich Structures & Materials, 19(4), 456–481. https://doi.org/10.1177/1099636215621871
  • Wang, Z., Ma, S., Zheng, S., Ding, J., & Wang, X. (2019). Flexural strength and thermal conductivity of fiber-reinforced calcium silicate boards prepared from fly ash. Journal of Materials in Civil Engineering, 31(8), 04019140. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002726
  • Younesian, A., Nili, M., & Azarioon, A. (2019, July). FEASIBILITY STUDY ON PRODUCTION OF FIBRE CEMENT BOARD USING MORTAR REINFORCED BY FIBREGLASS NET AND POLYPROPYLENE FIBRES [Paper presentation]. Proceedings of the Fifth International Conference on Sustainable Construction Materials and Technologies (SCMT5), Kingston University London. https://doi.org/10.18552/2019/IDSCMT5177
  • Yu, K. Q., Yu, J. T., Dai, J. G., Lu, Z. D., & Shah, S. P. (2018). Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers. Construction and Building Materials, 158, 217–227. https://doi.org/10.1016/j.conbuildmat.2017.10.040
  • Yudina, A. (2019). Enhancing technological processes in building construction and reconstruction by means of new technologies. Asian Journal of Civil Engineering, 20(5), 727–732. https://doi.org/10.1007/s42107-019-00139-9
  • Zare, M., Kamranzad, F., Parcharidis, I., Tsironi, V., & Varvara Tsironi, V. (2017). Preliminary report of Mw7. 3 Sarpol-e Zahab. Iran earthquake on November, 12.
  • Zeynalian, M., & Ronagh, H. R. (2015). Seismic performance of cold formed steel walls sheathed by fibre-cement board panels. Journal of Constructional Steel Research, 107, 1–11. https://doi.org/10.1016/j.jcsr.2015.01.003
  • Zhang, Z., Yang, F., Liu, J. C., & Wang, S. (2020). Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash. Cement and Concrete Research, 137, 106200. https://doi.org/10.1016/j.cemconres.2020.106200
  • Zongjin, L. (2011). Advanced concrete technology. John Wiley & Sons, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.