273
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Test results for a monopile in medium dense sand subjected to unidirectional lateral cyclic loading

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1957-1988 | Received 05 Jun 2021, Accepted 24 Jul 2022, Published online: 08 Aug 2022

References

  • Abadie, C. N., Byrne, B. W., & Houlsby, G. T. (2019). Rigid pile response to cyclic lateral loading: Laboratory tests. Géotechnique, 69(10), 863–876. https://doi.org/10.1680/jgeot.16.P.325
  • Achmus, M., Thieken, K., & Lemke, K. (2014). Evaluation of p-y approaches for large diameter monopiles in sand [Paper presentation]. Proceedings of 24th International Offshore & Polar Engineering Conference, ISOPE 24, Korea, 531–539.
  • Akdag, C. T. (2016). Behavior of closely spaced double-pile-supported jacket foundations for offshore wind energy converters under monotonic loading. Applied Ocean Research, 58, 164–177. https://doi.org/10.1016/j.apor.2016.04.008
  • Akdag, C. T., Özden, G., & Stopper, J. (2014). Nichtlineare p-y-Beziehung von Stahlbetonpfählen und stahlfaserverstärkten Stahlbetonpfählen in mitteldichtem Sand. Bautechnik, 91(9), 609–621. https://doi.org/10.1002/bate.201200068
  • American Petroleum Institute (API). (2014). Geotechnical and foundation design considerations. American Petroleum Institute, p. 138
  • Ashour, M., Norris, G. M., & Shamsabadi, A. (2001). Effect of the non-linear behaviour of pile material on the response of laterally loaded piles [Paper presentation]. International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Calfornia, pp. 1–8.
  • Ashour, M., & Norris, G. M. (2000). Modeling lateral soil-pile response based on soil-pile interaction. Journal of Geotechnical and Geoenvironmental Engineering, 126(5), 420–428. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420)
  • Ashour, M., Norris, G., & Pilling, P. (2002). Strain wedge capability of analyzing behaviour of laterally loaded isolated piles, drilled shafts, and pile groups. Journal of Bridge Engineering, 7, 245–256.
  • Baek, S.-H., Kim, J., Lee, S.-H., & Chung, C.-K. (2018). Development of the cyclic p-y curve for a single pile in sandy soil. Marine Georesources & Geotechnology, 36(3), 351–359. https://doi.org/10.1080/1064119X.2017.1318986
  • Baltic Eagle GmbH. (2020). Baltic eagle offshore wind farm explanatory report. http://www.swedishepa.se/Global-links/Search/?query=Baltic+eagle
  • Benz, T. (2007). Small strain stiffness of soils and its numerical consequences. [Ph.D.Thesis]. Stuttgart Mitteilung 55 des Instituts für Geotechnik der Universität Stuttgart.
  • Benz, T., Schwab, R., & Vermeer, P. (2009). Small-strain stiffness in geotechnical analyses. Bautechnik, 86(S1), 16–27. https://doi.org/10.1002/bate.200910038
  • Bhattacharya, B., Cox, J. A., Lombardi, D., & Wood, D. M. (2013). Dynamics of offshore wind turbines supported on two foundations. Geotechnical Engineering, 166(GE2), 159–169.
  • Byrne, B. W., McAdam, R., Burd, H. J., & Skov Gretlund, J. (2015). New design methods for large diameter piles under lateral loading for offshore wind applications. 3rd International Symposium of Frontiers in Offshore Geotechnics (ISFOG2015), Oslo, Norway (pp. 705–710).
  • Cox, W. R., Reese, L. C., & Grubbs, B. R. (1974). Field testing of laterally loaded piles in sand [Paper presentation]. Proceedings of the Sixth Offshore Technology Conference, OTC 2079, Houston, OTC (pp. 459–472).
  • Davisson, M. (1970). Lateral load capacity of piles. In 49th Annual Meeting of the Highway Research Board (pp. 104–110).
  • Det Norske Veritas – DNV. (2018). DNV-ST-0126 – Support structures for wind turbines. DNV-GL, p. 208.
  • DIN. (2018). Geotechnische Erkundung und Untersuchung -Benennung, Beschreibung und Klassifizierung von BodenTeil 2:Grundlagen für Bodenklassifizierungen DIN EN ISO 14688-2. Normen durch Beuth VerlagGmbH, 21.
  • Ensoft Inc. (2020). Ensoft, Inc.; [Online] https://www.ensoftinc.com/products/lpile/
  • Frick, D., & Achmus, M. (2019a). Model tests on the behaviour of monopiles under general cyclic lateral loading [Paper presentation]. 2nd International Conference on Natural Hazards & Infrastructure (ICONHIC), Chania/Greece, June 23–26.
  • Frick, D., & Achmus, M. (2019b). Model tests on the displacement accumulation of monopiles subjected to general cyclic loading [Paper presentation]. Coastal Structures Conference 2019, Germany, Hannover, September 30–October 2.
  • Frick, D., & Achmus, M. (2020). An experimental study on the parameters affecting the cyclic lateral response of monopiles for offshore wind turbines in sand. Soils and Foundations, 60(6), 1570–1587. https://doi.org/10.1016/j.sandf.2020.10.004
  • Haiderali, A. E., & Madabhushi, G. (2016). Evaluation of curve fitting techniques in deriving p–y curves for laterally loaded piles. Geotechnical and Geological Engineering, 34(5), 1453–1473. https://doi.org/10.1007/s10706-016-0054-2
  • Hardin, B. O., & Black, W. L. (1969). Closure to vibration modulus of normally consolidated clays. Proceedings of the ASCE: Journal of the Soil Mechanics and Foundations Division, 95(SM6), 1531–1537.
  • Hermans, K. W., & Peeringa, J. M. (2016). Future XL monopile foundation design for a 10 MW wind turbine in deep water. ECN Wind Energy, 43.
  • Hettler, A. (1981). Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 90.
  • Kagawa, T., & Kraft, L. M. (1980). Lateral load-deflection relationships of piles subjected to dynamic loadings. Soils and Found, 20(4), 19–34.
  • Kallehave, D., LeBlanc Thilsted, C., & Liingaard, M. A. (2012). Modification of the API p-y formulation of initial stiffness of sand [Paper presentation]. Proceedings of 7th International Conference in Offshore Site Investigation & Geotechnics, London, (pp. 465–472).
  • Kelly, R. B., Houlsby, G. T., & Byrne, B. W. (2006). A comparison of field and laboratory tests of caisson foundations in sand and clay. Géotechnique, 56(9), 617–626. https://doi.org/10.1680/geot.2006.56.9.617
  • LeBlanc, C., Byrne, B. W., & Houlsby, G. T. (2010). Response of stiff piles to random two-way lateral loading. Géotechnique, 60(9), 715–721. https://doi.org/10.1680/geot.09.T.011
  • Lee, M., Bae, K.-T., Lee, I. W., & Yoo, M. (2019). Cyclic p-y curves of monopiles in dense dry sand using centrifuge model tests. Applied Sciences, 9(8), 1641–1658. https://doi.org/10.3390/app9081641
  • Lesny, L., & Hinz, P. (2009). Design of monopile foundations for offshore wind energy converters [Paper presentation]. International Foundation Congress and Equipment Expo 2009, Orlando, FL, (pp. 512–519). https://doi.org/10.1061/41021(335)64
  • Li, W., Igoe, D., & Kenneth, G. (2015). Field tests to investigate the cyclic response of monopiles in sand. Geotechnical Engineering, 168, 407–421.
  • Li, Z., Haigh, S. K., & Bolton, M. D. (2010). Centrifuge modelling of mono-pile under cyclic lateral loads [Paper presentation]. 7th International Coference on Physical Modeling in Geotechnics, Zurich, CRC Press (pp. 965–970).
  • Lin, S.-S., & Liao, J. C. (1999). Permanent strains of piles in sand due to cyclic lateral loads. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 798–802. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(798)
  • Little, R. L., & Briaud, J. (1988). Full scale cyclic lateral load tests on six single piles in sand. Geotechnical Division, Texas A&M, 121.
  • Long, J. H., & Vanneste, G. (1994). Effects of cyclic lateral loads on piles in sand. Journal of Geotechnical Engineering, 120(1), 225–243. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225)
  • Manoliu, I., Dimitriu, D. V., Radulescu, N., & Dobrescu, G. (1985). Load-deformation characteristics of drilled piers [Paper presentation]. Proceedings 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA, AA Balkema (pp. 1553–1558).
  • Nanda, S., Arthur, I., Sivakumar, V., Donohue, S., Bradshaw, A., Keltai, R., Gavin, K., Mackinnon, P., Rankin, B., & Glynn, D. (2017). Monopiles subjected to uni- and multilateral cyclic loading. Geotechnical Engineering, 170, 246–258.
  • Nicolai, G., & Ibsen, L. I. (2014). Small-scale testing of cyclic laterally loaded monopiles in dense saturated sand. Journal of Ocean and Wind Energy, 1, 240–245.
  • Nunez, I. L., Hoadley, P. J., Randolph, M. F., & Hulett, J. M. (1988). Driving and tension loading of piles in sand on a centrifuge [Paper presentation]. Proceedings International Conference Centrifuge, Paris, Balkema (pp. 353–362).
  • Özden, G., & Akdag, C. T. (2009). Lateral load response of steel fiber reinforced concrete model piles in cohesionless soil. Construction and Building Materials, 23(2), 785–794. https://doi.org/10.1016/j.conbuildmat.2008.03.001
  • Peralta, P., & Achmus, M. (2010). An experimental investigation of piles in sand subjected to lateral cyclic loads [Paper presentation]. 7th International Conference on Physical Modeling in Geotechnics, Zurich. Taylor & Francis Group (pp. 985–990).
  • Poulos, H. G. (1982). Single pile response to cyclic lateral load. Journal of the Geotechnical Engineering Division, 108(3), 355–375. https://doi.org/10.1061/AJGEB6.0001255
  • Reese, L. C., Cox, W. R., & Koop, F. D. (1974). Analysis of laterally loaded piles in sand [Paper presentation]. Proceedings of the Sixth Offshore Technology Conference, Houston. OTC (pp. 473–483).
  • Remaud, D. (1999). Pieux sous charges latérales: etude expérimentale de l’effet de. Université de Nantes, 328.
  • Richards, I. A., Bransby, M. F., Byrne, B. W., Gaudin, C., & Houlsby, G. T. (2021). Effect of stress level on response of model monopile to cyclic lateral loading in sand. Journal of Geotechnical and Geoenvironmental Engineering, 147(3), 04021002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002447
  • Rosquoët, F., Thorel, L., Garnier, J., & Canepa, Y. (2007). Lateral cyclic loading of sand-installed piles. Soils and Foundations, 47(5), 821–832. https://doi.org/10.3208/sandf.47.821
  • Sørensen, S. P. H., Ibsen, L. B., & Augustesen, A. H. (2010). Effects of diameter on initial stiffness of p y curves for large-diameter piles in sand [Paper presentation]. Proceedings of 7th European Conference on Numerical Methods in Geotechnical Engineering, Trondheim/Norway. CRC Press (pp. 907–912).
  • Sousa, A. M. D., Costa, Y. D. J., Araujo, A. G. D., & Costa, C. M. L. (2021). Behavior of CFA and H-section steel piles in lateral loading: Experimental and numerical analysis. Revista IBRACON de Estruturas e Materiais, 14(3), e14313. https://doi.org/10.1590/s1983-41952021000300013
  • Stein, P., Hinzmann, N., Gattermann, J., & Stahlmann, J. (2019). Experimentelle Versuche zur Steifigkeitsänderung von Monopfahlgründungen unter zyklisch lateraler Belastung. Pfahl-Symposium, Fachseminar, Braunschweig (pp. 115–133).
  • Tasan, E., Rackwitz, F., & Savidis, S. (2011). Experimentelle Untersuchungen zum Verhalten von zyklisch horizontal belasteten Monopiles. Bautechnik, 88(2), 102–112.
  • Thieken, K., Achmus, M., & Lemke, K. (2015). A new static p-y approach for piles with arbitrary dimensions in sand. Geotechnik, 38(4), 267–288. https://doi.org/10.1002/gete.201400036
  • Truong, P., & Lehane, P. M. (2015). Experimental Experimental trends from lateral cyclic tests of piles in sand. In Proceedings of the 3rd International Symposium on Frontiers in Offshore Geotechnics, ISFOG, 2015 (vol. I, pp. 747–752).
  • Verdure, L., Garnier, J., & Levacher, D. (2003). Lateral cyclic loading of single piles in sand. International Journal of Physical Modelling in Geotechnics, 3(3), 17–28. https://doi.org/10.1680/ijpmg.2003.030303
  • Wiemann, J., Lesny, K., & Richwien, W. (2004). Evaluation of the pile diameter effects on soil-pile stiffness [Paper presentation]. Proceedings of 7th German Wind Energy Conference (DEWEK), Germany, Wilhelmshaven.
  • Wood, D. M. (2004). Geotechnical modelling. Spon Press, 504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.