499
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Environmentally friendly viscosity-modifying agent for self-compacting mortar: Cladophora sp. cellulose nanofibres

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2015-2030 | Received 09 Mar 2022, Accepted 27 Jul 2022, Published online: 08 Aug 2022

References

  • Alzoubi, H. H., Albiss, B. A., & Abu sini, S. S. (2020). Performance of cementitious composites with nano PCMs and cellulose nano fibers. Construction and Building Materials, 236, 117483. https://doi.org/10.1016/j.conbuildmat.2019.117483
  • Ardanuy, M., Claramunt, J., & Toledo Filho, R. D. (2015). Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 79, 115–128. https://doi.org/10.1016/j.conbuildmat.2015.01.035
  • Bartos, P. J. M., & Marrs, D. L. (1999). 15 development and testing of self-compacting grout for the production of sifcon. In PRO 6: 3rd International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 3) (p. 171). RILEM Publications.
  • Bouziani, T., & Benmounah, A. (2013). Correlation between v-funnel and mini-slump test results with viscosity. KSCE Journal of Civil Engineering, 17(1), 173–178. https://doi.org/10.1007/s12205-013-1569-1
  • Brouwers, H. J. H., & Radix, H. J. (2005). Self-compacting concrete: Theoretical and experimental study. Cement and Concrete Research, 35(11), 2116–2136. https://doi.org/10.1016/j.cemconres.2005.06.002
  • Cengiz, A., Kaya, M., & Pekel Bayramgil, N. (2017). Flexural stress enhancement of concrete by incorporation of algal cellulose nanofibers. Construction and Building Materials, 149, 289–295. https://doi.org/10.1016/j.conbuildmat.2017.05.104
  • Cyr, M., Legrand, C., & Mouret, M. (2000). Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives. Cement and Concrete Research, 30(9), 1477–1483. https://doi.org/10.1016/S0008-8846(00)00330-6
  • Domone, P. L. (2006). Self-compacting concrete: An analysis of 11 years of case studies. Cement and Concrete Composites, 28(2), 197–208. https://doi.org/10.1016/j.cemconcomp.2005.10.003
  • Dussán, K. J. (2014). Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chemical Engineering Transaction, 38, 433–438. https://doi.org/10.3303/CET1438073
  • EFNARC. (2005). The European guidelines for self-compacting concrete specification, production and use. Retrieved March 6, 2021, from www.efnarc.org.
  • Ek, R., Alderborn, G., & Nyström, C. (1994). Particle analysis of microcrystalline cellulose: Differentiation between individual particles and their agglomerates. International Journal of Pharmaceutics, 111(1), 43–50. https://doi.org/10.1016/0378-5173(94)90400-6
  • Ek, R., Gustafsson, C., Nutt, A., Iversen, T., & Nyström, C. (1998). Cellulose powder from Cladophora sp. algae. Journal of Molecular Recognition, 11(1–6), 263–265. https://doi.org/10.1002/(SICI)1099-1352(199812)11:1/6<263::AID-JMR437>3.0.CO;2-G
  • Felekoǧlu, B. (2006). The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars. Cement and Concrete Research, 36(9), 1719–1726. https://doi.org/10.1016/j.cemconres.2006.04.002.
  • Fu, T., Montes, F., Suraneni, P., Youngblood, J., & Weiss, J. (2017). The influence of cellulose nanocrystals on the hydration and flexural strength of Portland cement pastes. Polymers, 9(12), 424. https://doi.org/10.3390/polym9090424
  • Gencel, O., Brostow, W., Datashvili, T., & Thedford, M. (2012). Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash. Composite Interfaces, 18(2), 169–184. https://doi.org/10.1163/092764411X567567
  • George, J., & Sabapathi, S. N. (2015). Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology, Science and Applications, 8, 45.
  • Ghio, V. A., Monteiro, P. J. M., & Demsetz, L. A. (1994). The rheology of fresh cement paste containing polysaccharide gums. Cement and Concrete Research, 24(2), 243–249. https://doi.org/10.1016/0008-8846(94)90049-3
  • Gwon, S., & Shin, M. (2021). Rheological properties of cement pastes with cellulose microfibers. Journal of Materials Research and Technology, 10, 808–818. https://doi.org/10.1016/j.jmrt.2020.12.067
  • Habib, A. O., Aiad, I., El-Hosiny, F. I., & Mohsen, A. (2021). Studying the impact of admixtures chemical structure on the rheological properties of silica-fume blended cement pastes using various rheological models. Ain Shams Engineering Journal, 12(2), 1583–1594. https://doi.org/10.1016/j.asej.2020.12.009
  • Habibi, Y., & Dufresne, A. (2008). Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules, 9(7), 1974–1980. https://doi.org/10.1021/bm8001717
  • Haddadou, N., Chaid, R., & Ghernouti, Y. (2014). Experimental study on steel fibre reinforced self-compacting concrete incorporating high volume of marble powder. European Journal of Environmental and Civil Engineering, 19(1), 48–64. https://doi.org/10.1080/19648189.2014.929537
  • Hassan, A. A. A., Hossain, K. M. A., & Lachemi, M. (2010). Strength, cracking and deflection performance of large-scale self-consolidating concrete beams subjected to shear failure. Engineering Structures, 32(5), 1262–1271. https://doi.org/10.1016/j.engstruct.2010.01.002
  • Hisseine, O. A., Basic, N., Omran, A. F., & Tagnit-Hamou, A. (2018). Feasibility of using cellulose filaments as a viscosity modifying agent in self-consolidating concrete. Cement and Concrete Composites, 94, 327–340. https://doi.org/10.1016/j.cemconcomp.2018.09.009
  • Hisseine, O. A., Omran, A. F., & Tagnit-Hamou, A. (2018). Influence of cellulose filaments on cement paste and concrete. Journal of Materials in Civil Engineering, 30(6), 4018109. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002287
  • Huang, Y.-B., & Fu, Y. (2013). Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry, 15(5), 1095–1111. https://doi.org/10.1039/c3gc40136g
  • John, V. M., Cincotto, M. A., Sjöström, C., Agopyan, V., & Oliveira, C. T. A. (2005). Durability of slag mortar reinforced with coconut fibre. Cement and Concrete Composites, 27(5), 565–574. https://doi.org/10.1016/j.cemconcomp.2004.09.007
  • Jousson, O., Pawlowski, J., Zaninetti, L., Zechman, F. W., Dini, F., Di Guiseppe, G., Woodfield, R., Millar, A., & Meinesz, A. (2000). Invasive alga reaches California. Nature, 408(6809), 157–158. https://doi.org/10.1038/35041623
  • Kaur, V., Bera, M. B., Panesar, P. S., Kumar, H., & Kennedy, J. F. (2014). Welan gum: Microbial production, characterization, and applications. International Journal of Biological Macromolecules, 65, 454–461. https://doi.org/10.1016/j.ijbiomac.2014.01.061
  • Kawai, T. (1987). Non-dispersible underwater concrete using polymers. Marine Concrete, Chapter 11.5, 6.
  • Khayat, K. H. (1998). Viscosity-enhancing admixtures for cement-based materials—An overview. Cement and Concrete Composites, 20(2–3), 171–188. https://doi.org/10.1016/S0958-9465(98)80006-1
  • Khayat, K. H., & Assaad, J. (2002). Air-void stability in self-consolidating concrete. ACI Materials Journal, 99(4), 408–416.
  • Khayat, K. H., & Guizani, Z. (1997). Use of viscosity-modifying admixture to enhance stability of fluid concrete. Materials Journal, 94(4), 332–340.
  • Khayat, K. H., & Yahia, A. (1997). Effect of welan gum-high-range water reducer combinations on rheology of cement grout. Materials Journal, 94(5), 365–372.
  • Khayat, K. H., & Yahia, A. (1998). Simple field tests to characterize fluidity and washout resistance of structural cement grout. Cement, Concrete and Aggregates, 20(1), 145–156. https://doi.org/10.1520/CCA10448J
  • Kočí, V., Maděra, J., Jerman, M., Žumár, J., Koňáková, D., Čáchová, M., Vejmelková, E., Reiterman, P., & Černý, R. (2016). Application of waste ceramic dust as a ready-to-use replacement of cement in lime-cement plasters: An environmental-friendly and energy-efficient solution. Clean Technologies and Environmental Policy, 18(6), 1725–1733. https://doi.org/10.1007/s10098-016-1183-2
  • Lachemi, M., Hossain, K. M. A., Lambros, V., Nkinamubanzi, P.-C., & Bouzoubaâ, N. (2004). Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cement and Concrete Research, 34(2), 185–193. https://doi.org/10.1016/S0008-8846(03)00233-3
  • Leemann, A., & Winnefeld, F. (2007). The effect of viscosity modifying agents on mortar and concrete. Cement and Concrete Composites, 29(5), 341–349. https://doi.org/10.1016/j.cemconcomp.2007.01.004
  • Legrand, C. (1972). Contribution à l’étude de la rhéologie du béton frais. Matériaux et Constructions, 5(5), 275–295. https://doi.org/10.1007/BF02474870
  • Li, Z., Wang, X., & Wang, L. (2006). Properties of hemp fibre reinforced concrete composites. Composites Part A: Applied Science and Manufacturing, 37(3), 497–505. https://doi.org/10.1016/j.compositesa.2005.01.032
  • Ma, L., Zhao, Q., Yao, C., & Zhou, M. (2012). Impact of welan gum on tricalcium aluminate–gypsum hydration. Materials Characterization, 64, 88–95. https://doi.org/10.1016/j.matchar.2011.12.002
  • Mihranyan, A. (2011). Cellulose from cladophorales green algae: From environmental problem to high‐tech composite materials. Journal of Applied Polymer Science, 119(4), 2449–2460. https://doi.org/10.1002/app.32959
  • Montes, F., Fu, T., Youngblood, J. P., & Weiss, J. (2020). Rheological impact of using cellulose nanocrystals (CNC) in cement pastes. Construction and Building Materials, 235, 117497. https://doi.org/10.1016/j.conbuildmat.2019.117497
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. https://doi.org/10.1039/c0cs00108b
  • Nanthagopalan, P., & Santhanam, M. (2010). A new empirical test method for the optimisation of viscosity modifying agent dosage in self-compacting concrete. Materials and Structures, 43(1–2), 203–212. https://doi.org/10.1617/s11527-009-9481-3
  • Nawa, T., Izumi, T., & Edamatsu, Y. (1999). State-of-the-art report on materials and design of self-compacting concrete. Proceedings of the International Workshop on Self-Compacting Concrete, Kochi University of Technology, Japan (pp. 160–190).
  • Nazar, S., Yang, J., Thomas, B. S., Azim, I., & Ur Rehman, S. K. (2020). Rheological properties of cementitious composites with and without nano-materials: A comprehensive review. Journal of Cleaner Production, 272, 122701. https://doi.org/10.1016/j.jclepro.2020.122701
  • Nehdi, M., & Rahman, M. A. (2004). Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cement and Concrete Research, 34(11), 1993–2007. https://doi.org/10.1016/j.cemconres.2004.02.020
  • Oh, M. H., So, J. H., & Yang, S. M. (1999). Rheological evidence for the silica-mediated gelation of xanthan gum. Journal of Colloid and Interface Science, 216(2), 320–328. https://doi.org/10.1006/jcis.1999.6325
  • Ousmane, H. (no date) Understanding the role of nanocellulose on the strength of cement composites: A macro-to-micro ınvestigation of systems with cellulose filaments.
  • Ozawa, K. (1989). High-performance concrete based on the durability design of concrete structures.Proceedings of the Second East Asia-Pacific Conference on Structural Engineering and Construction, Japan, 1989.
  • Pei, R., Liu, J., & Wang, S. (2015). Use of bacterial cell walls as a viscosity-modifying admixture of concrete. Cement and Concrete Composites, 55, 186–195. https://doi.org/10.1016/j.cemconcomp.2014.08.007
  • Peng, J., Deng, D., Yuan, Q., Liu, Z., & Fang, L. (2014). Study of the rheological behavior of fresh cement emulsified asphalt paste. Construction and Building Materials, 66, 348–355. https://doi.org/10.1016/j.conbuildmat.2014.05.023
  • Pfeuffer, M., & Kusterle, W. (2001). Rheology and rebound behaviour of dry-mix shotcrete. Cement and Concrete Research, 31(11), 1619–1625. https://doi.org/10.1016/S0008-8846(01)00614-7
  • Pourchez, J., Peschard, A., Grosseau, P., Guyonnet, R., Guilhot, B., & Vallée, F. (2006). HPMC and HEMC influence on cement hydration. Cement and Concrete Research, 36(2), 288–294. https://doi.org/10.1016/j.cemconres.2005.08.003
  • Ramezanianpour, A. M., & Hooton, R. D. (2014). A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cement and Concrete Composites, 51, 1–13. https://doi.org/10.1016/j.cemconcomp.2014.03.006
  • Rasekh, H, Joshaghani A., Jahandari S., Aslanid F., & Ghodrat M. (2020). Rheology and workability of SCC. In R. Siddique (Ed.), Self-compacting concrete: Materials, properties and applications (pp. 31–63). Elsevier.
  • Roussel, N. (2006). Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results. Materials and Structures, 39(4), 501–509. https://doi.org/10.1617/s11527-005-9035-2
  • Saak, A. W., Jennings, H. M., & Shah, S. P. (2001). New methodology for designing self-compacting concrete. Materials Journal, 98(6), 429–439.
  • Şahmaran, M., Christianto, H. A., & Yaman, I. Ö. (2006). The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cement and Concrete Composites, 28(5), 432–440. https://doi.org/10.1016/j.cemconcomp.2005.12.003
  • Shahriar, A., & Nehdi, M. L. (2014). Effect of supplementary cementitious materials on rheology of oil well cement slurries. Advances in Civil Engineering Materials, 3(1), 20120027–20120478. https://doi.org/10.1520/ACEM20120027
  • Sonebi, M. (2006). Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash. Cement and Concrete Research, 36(9), 1609–1618. https://doi.org/10.1016/j.cemconres.2006.05.016
  • Strømme, M., Mihranyan, A., & Ek, R. (2002). What to do with all these algae? Materials Letters, 57(3), 569–572. https://doi.org/10.1016/S0167-577X(02)00831-5
  • Su, N., Hsu, K. C., & Chai, H. W. (2001). A simple mix design method for self-compacting concrete. Cement and Concrete Research, 31(12), 1799–1807. https://doi.org/10.1016/S0008-8846(01)00566-X
  • Sun, X., Wu, Q., Zhang, J., Qing, Y., Wu, Y., & Lee, S. (2017). Rheology, curing temperature and mechanical performance of oil well cement: Combined effect of cellulose nanofibers and graphene nano-platelets. Materials & Design, 114, 92–101. https://doi.org/10.1016/j.matdes.2016.10.050
  • Swamy, R. N. (1990). Vegetable fibre reinforced cement composites–A false dream or a potential reality? In Vegetable Plants and their Fibres as Building Materials: Proceedings of the Second International RILEM Symposium (p. 9780203626818). Routledge.
  • Türk, F. (2021). Investigation of the usability of nanocellulose fibers obtained from Cladophora as a viscosity modifying agent ın self-consolıdatıng mortars. Konya Technical University Graduate Education Institute.
  • Turk, K. (2012). Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica fume. Construction and Building Materials, 37, 326–334. https://doi.org/10.1016/j.conbuildmat.2012.07.081
  • Vashistha, P., Singh, S. K., Dutt, D., & Kumar, V. (2019). Synthesis of nanosilica from fly ash and its utilization with lime sludge in concrete: An environmentally friendly and sustainable solution. Clean Technologies and Environmental Policy, 21(9), 1841–1853. https://doi.org/10.1007/s10098-019-01753-6
  • Yahia, A., & Khayat, K. H. (2001). Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cement and Concrete Research, 31(5), 731–738. https://doi.org/10.1016/S0008-8846(01)00476-8
  • Záleská, M., Pavlík, Z., Pavlíková, M., Scheinherrová, L., Pokorný, J., Trník, A., Svora, P., Fořt, J., Jankovský, O., Suchorab, Z., & Černý, R. (2018). Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technologies and Environmental Policy, 20(1), 159–171. https://doi.org/10.1007/s10098-017-1465-3
  • Zhang, Y., Kong, X., Gao, L., & Wang, J. (2016). Rheological behaviors of fresh cement pastes with polycarboxylate superplasticizer. Journal of Wuhan University of Technology-Materials Science Edition, 31(2), 286–299. https://doi.org/10.1007/s11595-016-1366-z
  • Zhang, Y., Zhang, Z., Li, X., Li, W., Shen, X., & Wang, H. (2018). Effect of welan gum on the hydration and hardening of Portland cement. Journal of Thermal Analysis and Calorimetry, 131(2), 1277–1286. https://doi.org/10.1007/s10973-017-6589-5
  • Zhu, J., Liu, J., Khayat, K. H., Shu, X., Ran, Q., & Li, Z. (2022). Mechanisms affecting viscosity of cement paste made with microfines of manufactured sand. Cement and Concrete Research, 156, 106757. https://doi.org/10.1016/j.cemconres.2022.106757

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.