662
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Mechanism, influencing factors and research methods for soil desiccation cracking: a review

ORCID Icon, , ORCID Icon &
Pages 3091-3115 | Received 26 Nov 2021, Accepted 22 Aug 2022, Published online: 08 Jan 2023

References

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54–62. https://doi.org/10.2118/942054-G
  • Albrecht, B. A., & Benson, C. H. (2001). Effect of desiccation on compacted natural clays. Journal of Geotechnical and Geoenvironmental Engineering, 127(1), 67–75. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67)
  • Amarasiri, A. L., Kodikara, J. K., & Costa, S. (2011a). Numerical modelling of desiccation cracking. International Journal for Numerical and Analytical Methods in Geomechanics, 35(1), 82–96. https://doi.org/10.1002/nag.894
  • Amarasiri, A. L., Costa, S., & Kodikara, J. K. (2011b). Determination of cohesive properties for mode I fracture from compacted clay beams. Canadian Geotechnical Journal, 48(8), 1163–1173. https://doi.org/10.1139/t11-031
  • Amarasiri, A., & Kodikara, J. (2011). Use of material interfaces in DEM to simulate soil fracture propagation in Mode I cracking. International Journal of Geomechanics, 11(4), 314–322. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000090
  • Anderson, M. T., & Lu, N. (2001). Role of microscopic physicochemical forces in large volumetric strains for clay sediments. Journal of Engineering Mechanics, 127(7), 710–719. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:7(710)
  • Ayad, R., Konrad, J. M., & Soulié, M. (1997). Desiccation of a sensitive clay: Application of the model CRACK. Canadian Geotechnical Journal, 34(6), 943–951. https://doi.org/10.1139/t97-065
  • Bai, W., Kong, L. W., Guo, A. G., & Li, J. (2015). Temporal characteristics of desiccation cracking and resistivity of lateritic soil in drying process. Drying Technology, 33(8), 952–964. https://doi.org/10.1080/07373937.2015.1009537
  • Bhandari, T., Hamad, F., Moormann, C., Sharma, K. G., & Westrich, B. (2016). Numerical modelling of seismic slope failure using MPM. Computers and Geotechnics, 75, 126–134. https://doi.org/10.1016/j.compgeo.2016.01.017
  • Bui, H. H., Sako, K., & Fukagawa, R. (2007). Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. Journal of Terramechanics, 44(5), 339–346. https://doi.org/10.1016/j.jterra.2007.10.003
  • Bui, H. H., Nguyen, G. D., Kodikara, J., & Sanchez, M. (2015). Soil cracking modelling using the mesh-free SPH method. arXiv preprint arXiv:1503.01172.
  • Bui, H. H., Fukagawa, R., Sako, K., & Ohno, S. (2008). Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1537–1570. https://doi.org/10.1002/nag.688
  • Chaduvula, U., Viswanadham, B. V. S., & Kodikara, J. (2022). Centrifuge model studies on desiccation cracking behaviour of fiber-reinforced expansive clay. Geotextiles and Geomembranes, 50(3), 480–497. https://doi.org/10.1016/j.geotexmem.2022.02.001
  • Corte, A., & Higashi, A. (1964). Experimental research on desiccation cracks in soil (No. CRREL-RR-66 Final Rpt.).
  • Cordero, J. A., Prat, P. C., & Ledesma, A. (2021). Experimental analysis of desiccation cracks on a clayey silt from a large-scale test in natural conditions. Engineering Geology, 292, 106256. https://doi.org/10.1016/j.enggeo.2021.106256
  • Deng, Y. F., Yue, X. B., Cui, Y. J., Shao, G. H., Liu, S. Y., & Zhang, D. W. (2014). Effect of pore water chemistry on the hydro-mechanical behaviour of Lianyungang soft marine clay. Applied Clay Science, 95, 167–175. https://doi.org/10.1016/j.clay.2014.04.007
  • DeCarlo, K. F., & Shokri, N. (2014). Salinity effects on cracking morphology and dynamics in 3‐D desiccating clays. Water Resources Research, 50(4), 3052–3072. https://doi.org/10.1002/2013WR014424
  • Diamond, R., & Varghese, R. M. (2022). Desiccation cracking behavior and strength characteristics of areca fiber-reinforced fine grained soils. In Ground improvement and reinforced soil structures (pp. 105–118) Springer.
  • Dyer, M. R., Utili, S., & Zielinski, M. (2009). Field study into fine desiccation fissuring at Thorngumbald. Proc ICE Water Manage, 162(3), 221–232.
  • Du, G. L., Zhang, Y. S., & Yao, X. (2016). Formation mechanism analysis of Wulipo landslide-debris flow in Dujiangyan City. Rock and Soil Mechanics, 37(S2), 492–501.
  • El Hajjar, A., Ouahbi, T., Taibi, S., Eid, J., Hattab, M., & Fleureau, J. M. (2021). Assessing crack initiation and propagation in flax fiber reinforced clay subjected to desiccation. Construction and Building Materials, 278, 122392. https://doi.org/10.1016/j.conbuildmat.2021.122392
  • Fan, H., Liu, T., Zhang, S., He, H., Zhu, Z., Zhu, Y., & Gao, X. (2022). Effects of Jet Grouting Piles on Loess Tunnel Foundation with Centrifugal Model Tests. International Journal of Geomechanics. https://doi.org/10.1061/IJGNAI.GMENG-8078
  • Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024. https://doi.org/10.1139/t00-030
  • Fleureau, J. M., Wei, X., Ighil-Ameur, L., Hattab, M., & Bicalho, K. V. (2015). Experimental study of the cracking mechanisms of clay during drying. In From fundamentals to applications in geotechnics (pp. 2101–2108). IOS Press.
  • Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons.
  • Galvez-Serna, J., Mandel, N., Sandino, J., Vanegas Alvarez, F., Ly, N., Flannery, D., & Gonzalez, L. F. (2021, November). Real-time segmentation of desiccation cracks onboard UAVs for planetary exploration. In 2022 IEEE Aerospace Conference.
  • Gao, Q. F., Zeng, L., & Shi, Z. N. (2021). Effects of desiccation cracks and vegetation on the shallow stability of a red clay cut slope under rainfall infiltration. Computers and Geotechnics, 140, 104436. https://doi.org/10.1016/j.compgeo.2021.104436
  • Gui, Y., & Zhao, G. F. (2015). Modelling of laboratory soil desiccation cracking using DLSM with a two-phase bond model. Computers and Geotechnics, 69, 578–587. https://doi.org/10.1016/j.compgeo.2015.07.001
  • Han, X.-L., Jiang, N.-J., Yang, Y.-F., Choi, J., Singh, D. N., Beta, P., Du, Y.-J., & Wang, Y.-J. (2022). Deep learning based approach for the instance segmentation of clayey soil desiccation cracks. Computers and Geotechnics, 146, 104733. https://doi.org/10.1016/j.compgeo.2022.104733
  • Hallett, P. D., & Newson, T. A. (2005). Describing soil crack formation using elastic–plastic fracture mechanics. European Journal of Soil Science, 56(1), 31–38. https://doi.org/10.1111/j.1365-2389.2004.00652.x
  • Hedan, S., Valle, V., Giot, R., & Cosenza, P. (2022). Behavior in mixed-mode of desiccation cracks on a clayey rock front gallery. International Journal of Rock Mechanics and Mining Sciences, 154, 105104. https://doi.org/10.1016/j.ijrmms.2022.105104
  • Hou, L., Weng, X., Hu, J., & Zhou, R. (2022). Undrained semi-analytical solution for cylindrical cavity expansion in anisotropic soils under biaxial stress conditions. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.07.005
  • Hu, L. B., Péron, H., Hueckel, T., & Laloui, L. (2007). Drying shrinkage of deformable porous media: Mechanisms induced by the fluid removal [Paper presentation]. Computer Applications in Geotechnical Engineering (pp. 1–10). https://doi.org/10.1061/40901(220)17
  • Hueckel, T. (1992). On effective stress concepts and deformation in clays subjected to environmental loads: Discussion. Canadian Geotechnical Journal, 29(6), 1120–1125. https://doi.org/10.1139/t92-130
  • Hun, D. A., Yvonnet, J., Guilleminot, J., Dadda, A., Tang, A. M., & Bornert, M. (2021). Desiccation cracking of heterogeneous clayey soil: Experiments, modeling and simulations. Engineering Fracture Mechanics, 258, 108065. https://doi.org/10.1016/j.engfracmech.2021.108065
  • Huo, Z., Peng, J., Zhang, J., Tang, X., Li, P., Ding, J., Li, Z., Liu, Z., Dong, Z., Lei, Y., & Wang, X. (2019). Factors influencing the development of diagenetic shrinkage macro-fractures in shale. Journal of Petroleum Science and Engineering, 183, 106365. https://doi.org/10.1016/j.petrol.2019.106365
  • Julina, M., & Thyagaraj, T. (2019). Quantification of desiccation cracks using X-ray tomography for tracing shrinkage path of compacted expansive soil. Acta Geotechnica, 14(1), 35–56. https://doi.org/10.1007/s11440-018-0647-4
  • Jihen, F., Salma, S., Houcem, T., & Hassen, S. (2021). Numerical study of desiccation cracking in clayey soil: A new FEM-MPM coupling method.
  • Kafodya, I., & Okonta, F. (2019). Desiccation characteristics and desiccation-induced compressive strength of natural fibre-reinforced soil. International Journal of Geosynthetics and Ground Engineering, 5(3), 16. https://doi.org/10.1007/s40891-019-0169-7
  • Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting.
  • Kodikara, J. K., Nahlawi, H., & Bouazza, A. J. C. G. J. (2004). Modelling of curling in desiccating clay. Canadian Geotechnical Journal, 41(3), 560–566. https://doi.org/10.1139/t04-015
  • Kayyal, M. K. (1995). Effect of the moisture evaporative stages on the development of shrinkage cracks in soil. In Proceedings of First International Conference on Unsaturated Soils (pp. 373–379). sn.
  • Kodikara, J. K., Barbour, S. L., & Fredlund, D. G. (2020). Desiccation cracking of soil layers. In Unsaturated soils for Asia (pp. 693–698). CRC Press.
  • Konrad, J. M., & Ayad, R. (1997). A idealized framework for the analysis of cohesive soils undergoing desiccation. Canadian Geotechnical Journal, 34(4), 477–488. https://doi.org/10.1139/t97-015
  • Konrad, J. M., & Ayad, R. (1997). Desiccation of a sensitive clay: Field experimental observations. Canadian Geotechnical Journal, 34(6), 929–942. https://doi.org/10.1139/t97-063
  • Landlin, G., & Bhuvaneshwari, S. (2022). Analysis of desiccation crack patterns of expansive soil treated with lignosulphonate and lime. In Ground characterization and foundations (pp. 327–338). Springer.
  • Lee, F. H., Lo, K. W., & Lee, S. L. (1988). Tension crack development in soils. Journal of Geotechnical Engineering, 114(8), 915–929. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(915)
  • Louati, F., Trabelsi, H., Jamei, M., & Taibi, S. (2021). Impact of wetting-drying cycles and cracks on the permeability of compacted clayey soil. European Journal of Environmental and Civil Engineering, 25(4), 696–721. https://doi.org/10.1080/19648189.2018.1541144
  • Lakshmikantha, M. R., Prat, P. C., & Ledesma, A. (2012). Experimental evidence of size effect in soil cracking. Canadian Geotechnical Journal, 49(3), 264–284. https://doi.org/10.1139/t11-102
  • Lakshmikantha, M. R., Prat, P. C., & Ledesma, A. (2018). Boundary effects in the desiccation of soil layers with controlled environmental conditions. Geotechnical Testing Journal, 41(4), 20170018–20170697. https://doi.org/10.1520/GTJ20170018
  • Lakshmikantha, M. R., Prat, P. C., & Ledesma, A. (2006). An experimental study of cracking mechanisms in drying soils. In 5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics: Proceedings of the ISSMGE’s Fifth International Congress Organized by the Geoenvironmental Research Centre, Cardiff University and Held at Cardiff City Hall on 26–30th June 2006 (pp. 533–540). Thomas Telford Publishing.
  • Le, T. C., Liu, C., Tang, C. S., Zhang, X. Y., & Shi, B. (2022). Numerical simulation of desiccation cracking in clayey soil using a multifield coupling discrete-element model. Journal of Geotechnical and Geoenvironmental Engineering, 148(2) 04021183. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002747
  • Li, J. H., & Zhang, L. M. (2010). Geometric parameters and REV of a crack network in soil. Computers and Geotechnics, 37(4), 466–475. https://doi.org/10.1016/j.compgeo.2010.01.006
  • Li, D., Yang, B., Yang, C., Zhang, Z., & Hu, M. (2021). Effects of salt content on desiccation cracks in the clay. Environmental Earth Sciences, 80(19), 1–13. https://doi.org/10.1007/s12665-021-09987-8
  • Lin, Z. Y., Wang, Y. S., Tang, C. S., Cheng, Q., Zeng, H., Liu, C., & Shi, B. (2021). Discrete element modelling of desiccation cracking in thin clay layer under different basal boundary conditions. Computers and Geotechnics, 130, 103931. https://doi.org/10.1016/j.compgeo.2020.103931
  • Liu, H., Liu, C., Bai, G., Wu, Y., He, C., Zhang, R., & Wang, Y. (2022). Influence of pore defects on the hardened properties of 3D printed concrete with coarse aggregate. Additive Manufacturing, https://doi.org/10.1016/j.addma.2022.102843
  • Liu, C., Liu, Y., & Chen, Y. (2022). A state-of-the-practice review of three-dimensional laser scanning technology for tunnel distress monitoring. Journal of Performance of Constructed Facilities, https://doi.org/10.1061/JPCFEV.CFENG-4205
  • Liu, X., Zhang, W., Gu, X., & Ye, Z. (2022). Assessment of Fatigue Life for Corroded Prestressed Concrete Beams Subjected to High-Cycle Fatigue Loading. Journal of Structural Engineering, 149(1). https://doi.org/10.1061/JSENDH/STENG-11663
  • Liu, R., Vail, M., Koohbor, B., Zhu, C., Tan, C. S., Xu, H., & Shi, X. C. (2022). Desiccation cracking in clay-bottom ash mixtures: Insights from crack image analysis and digital image correlation. Bulletin of Engineering Geology and the Environment, 81(4), 1–15.
  • Lu, Y., Gu, K., Zhang, Y., Tang, C., Shen, Z., & Shi, B. (2021). Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms. The Science of the Total Environment, 794, 148608. https://doi.org/10.1016/j.scitotenv.2021.148608
  • Lu, N., & Likos, W. J. (2004). Unsaturated soil mechanics. John Wiley & Sons, Inc.
  • Lu, Y., Liu, S., Weng, L., Wang, L., Li, Z., & Xu, L. (2016). Fractal analysis of cracking in a clayey soil under freeze–thaw cycles. Engineering Geology, 208, 93–99. https://doi.org/10.1016/j.enggeo.2016.04.023
  • Morris, P. H., Graham, J., & Williams, D. J. (1994). Crack depths in drying clays using fracture mechanics. Geotechnical Special Publication, (43), 40–53.
  • Mohammadnejad, T., & Khoei, A. R. (2013). Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 37(10), 1247–1279. https://doi.org/10.1002/nag.2079
  • Miller, C. J., Mi, H., & Yesiller, N. (1998). Experimental analysis of desiccation crack propagation in clay liners 1. Journal of the American Water Resources Association, 34(3), 677–686. https://doi.org/10.1111/j.1752-1688.1998.tb00964.x
  • Nahlawi, H., & Kodikara, J. K. (2006). Laboratory experiments on desiccation cracking of thin soil layers. Geotechnical and Geological Engineering, 24(6), 1641–1664. https://doi.org/10.1007/s10706-005-4894-4
  • Omidi, G. H., Thomas, J. C., & Brown, K. W. (1996). Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water, Air, and Soil Pollution, 89(1-2), 91–103. https://doi.org/10.1007/BF00300424
  • Painuli, D. K., Mohanty, M., Sinha, N. K., & Misra, A. K. (2017). Crack formation in a swell–shrink soil under various managements. Agricult
  • Péron, H., Delenne, J. Y., Laloui, L., & El Youssoufi, M. S. (2009). Discrete element modelling of drying shrinkage and cracking of soils. Computers and Geotechnics, 36(1-2), 61–69. https://doi.org/10.1016/j.compgeo.2008.04.002
  • Peron, H., Hueckel, T., Laloui, L., & Hu, L. (2009a). Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal, 46(10), 1177–1201. https://doi.org/10.1139/T09-054
  • Peron, H., Laloui, L., Hueckel, T., & Hu, L. B. (2009b). Desiccation cracking of soils. European Journal of Environmental and Civil Engineering, 13(7–8), 869–888. https://doi.org/10.1080/19648189.2009.9693159
  • Prat, P. C., Ledesma, A., & Lakshmikantha, M. R. (2006). Size effect in the cracking of drying soil. In Fracture of nano and engineering materials and structures (pp. 1373–1374). Springer.
  • Qin, Y., Lai, J., Li, C., Fan, F., & Liu, T. (2023). Negative pressure testing standard for welded scar tightness of waterproofing sheet for tunnels: Experimental and Numerical Investigation. Tunnelling and Underground Space Technology. https://doi.org/10.1016/j.tust.2022.104930
  • Qin, Y., Lai, J., Yang, T., Zan, W., Feng, Z., & Liu, T. (2022). Failure analysis and countermeasures of a tunnel constructed in loose granular stratum by shallow tunnelling method. Engineering Failure Analysis, 140. https://doi.org/10.1016/j.engfailanal.2022.106667
  • Poncelet, N., Herrier, G., & François, B. (2022). An effective stress constitutive framework for the prediction of desiccation crack in lime-treated soil: Experimental characterization and constitutive prediction. Geomechanics for Energy and the Environment, 29, 100265. https://doi.org/10.1016/j.gete.2021.100265
  • Ralaizafisoloarivony, N., Degré, A., Mercatoris, B., Léonard, A., Toye, D., & Charlier, R. (2021). A first insight on the interaction between desiccation cracking and water transfer in a Luvisol of Belgium. Soil Systems, 5(4), 64. https://doi.org/10.3390/soilsystems5040064
  • Rodríguez, R. (2006). Hydrogeotechnical characterization of a metallurgical waste. Canadian Geotechnical Journal, 43(10), 1042–1060. https://doi.org/10.1139/t06-061
  • Rodríguez, R., Sánchez, M., Lloret, A., & Ledesma, A. (2007). Experimental and numerical analysis of a mining waste desiccation. Canadian Geotechnical Journal, 44(6), 644–658. https://doi.org/10.1139/t07-016
  • Schreier, H. W., & Sutton, M. A. (2002). Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental Mechanics, 42(3), 303–310. https://doi.org/10.1007/BF02410987
  • Silvestri, V., Sarkis, G., Bekkouche, N., & Soulié, M. (1992). Evapotranspiration, trees and damage to foundations in sensitive clays. Canadian Geotechnical Conference, 2, 533–538.
  • Sánchez, M., Manzoli, O. L., & Guimarães, L. J. (2014). Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Computers and Geotechnics, 62, 27–39. https://doi.org/10.1016/j.compgeo.2014.06.009
  • Sima, J., Jiang, M., & Zhou, C. (2013). Modelling desiccation cracking in thin clay layer using three-dimensional discrete element method. In AIP Conference Proceedings (Vol. 1542, No. 1, pp. 245–248). American Institute of Physics.
  • Sima, J., Jiang, M., & Zhou, C. (2014). Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling. Computers and Geotechnics, 56, 168–180. https://doi.org/10.1016/j.compgeo.2013.12.003
  • Shin, H., & Santamarina, J. C. (2011). Desiccation cracks in saturated fine-grained soils: Particle-level phenomena and effective-stress analysis. Géotechnique, 61(11), 961–972. https://doi.org/10.1680/geot.8.P.012
  • Shrestha, A., Jotisankasa, A., Chaiprakaikeow, S., Pramusandi, S., Soralump, S., & Nishimura, S. (2019). Determining shrinkage cracks based on the small-strain shear modulus–suction relationship. Geosciences, 9(9), 362. https://doi.org/10.3390/geosciences9090362
  • Sridharan, A., & Jayadeva, M. S. (1982). Double layer theory and compressibility of clays. Géotechnique, 32(2), 133–144. https://doi.org/10.1680/geot.1982.32.2.133
  • Sun, K., Tang, C., Wang, P., Wang, D., Chen, Z., & Xu, S. (2015). Effect of salt content on desiccation cracking behavior of soil. Journal of Engineering Geology, 23(s1), 77–83.
  • Tang, C. S., Cui, Y. J., Shi, B., Tang, A. M., & An, N. (2016). Effect of wetting-drying cycles on soil desiccation cracking behaviour. In E3S Web of Conferences (Vol. 9, p. 12003). EDP Sciences. https://doi.org/10.1051/e3sconf/20160912003
  • Tang, C. S., Shi, B., Liu, C., Suo, W. B., & Gao, L. (2011a). Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Applied Clay Science, 52(1–2), 69–77. https://doi.org/10.1016/j.clay.2011.01.032
  • Tang, C. S., Cui, Y. J., Shi, B., Tang, A. M., & Liu, C. (2011b). Desiccation and cracking behaviour of clay layer from slurry state under wetting–drying cycles. Geoderma, 166(1), 111–118. https://doi.org/10.1016/j.geoderma.2011.07.018
  • Tang, C. S., Shi, B., Liu, C., Gao, L., & Inyang, H. I. (2010a). Experimental investigation of the desiccation cracking behavior of soil layers during drying. Journal of Materials in Civil Engineering, 23(6), 873–878. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000242
  • Tang, C. S., Cui, Y. J., Tang, A. M., & Shi, B. (2010b). Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Engineering Geology, 114(3–4), 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003
  • Tang, C. S., Zhu, C., Leng, T., Shi, B., Cheng, Q., & Zeng, H. (2019). Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography. Engineering Geology, 255, 1–10. https://doi.org/10.1016/j.enggeo.2019.04.014
  • Tang, C. S., Wang, D. Y., Zhu, C., Zhou, Q. Y., Xu, S. K., & Shi, B. (2018). Characterizing drying-induced clayey soil desiccation cracking process using electrical resistivity method. Applied Clay Science, 152, 101–112. https://doi.org/10.1016/j.clay.2017.11.001
  • Tang, C., Shi, B., Liu, C., Zhao, L., & Wang, B. (2008). Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Engineering Geology, 101(3–4), 204–217. https://doi.org/10.1016/j.enggeo.2008.05.005
  • Tran, D. K., Ralaizafisoloarivony, N., Charlier, R., Mercatoris, B., Léonard, A., Toye, D., & Degré, A. (2019a). Studying the effect of desiccation cracking on the evaporation process of a Luvisol–From a small-scale experimental and numerical approach. Soil and Tillage Research, 193, 142–152. https://doi.org/10.1016/j.still.2019.05.018
  • Tran, H. T., Wang, Y., Nguyen, G. D., Kodikara, J., Sanchez, M., & Bui, H. H. (2019b). Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach. Computers and Geotechnics, 116, 103209. https://doi.org/10.1016/j.compgeo.2019.103209
  • Tian, B. G., Cheng, Q., Tang, C. S., Zeng, H., Xu, J. J., & Shi, B. (2022). Effects of compaction state on desiccation cracking behaviour of a clayey soil subjected to wetting-drying cycles. Engineering Geology, 302, 106650. https://doi.org/10.1016/j.enggeo.2022.106650
  • Vahab, M., Khoei, A. R., & Khalili, N. (2019). An X-FEM technique in modeling hydro-fracture interaction with naturally-cemented faults. Engineering Fracture Mechanics, 212, 269–290. https://doi.org/10.1016/j.engfracmech.2019.03.020
  • Vo, T. D., Pouya, A., Hemmati, S., & Tang, A. M. (2017). Numerical modelling of desiccation cracking of clayey soil using a cohesive fracture method. Computers and Geotechnics, 85, 15–27. https://doi.org/10.1016/j.compgeo.2016.12.010
  • Uday, K. V., & Singh, D. N. (2013). Investigation on cracking characteristics of fine-grained soils under varied environmental conditions. Drying Technology, 31(11), 1255–1266. https://doi.org/10.1080/07373937.2013.785433
  • Wardhana, I. W., Budihardjo, M. A., Istirokhatun, T., & Ikhlas, N. (2021, November). Desiccation cracks behaviour of leachate in bentonite-zeolite composite liner [Paper presentation]. IOP Conference Series: Earth and Environmental Science (Vol. 894, No. 1, p. 012043). IOP Publishing. https://doi.org/10.1088/1755-1315/894/1/012043
  • Wei, X., Hattab, M., Bompard, P., & Fleureau, J. M. (2016). Highlighting some mechanisms of crack formation and propagation in clays on drying path. Géotechnique, 66(4), 287–300. https://doi.org/10.1680/jgeot.14.P.227
  • Weng, X., Li, H., Hu, J., Li, L., & Xu, L. (2022). Behavior of Saturated Remolded Loess Subjected to Coupled Change of the Magnitude and Direction of Principal Stress. International Journal of Geomechanics. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002612
  • Wu, J. H., Yuan, J. P., & Ng, C. W. (2012). Theoretical and experimental study of initial cracking mechanism of an expansive soil due to moisture-change. Journal of Central South University, 19(5), 1437–1446. https://doi.org/10.1007/s11771-012-1160-9
  • Wu, H., & Chiu, C. (2021). Detecting depth of desiccation-induced clay crack based on anisotropy index (AI) of apparent electrical resistivity. CONVERTER, 2021(7), 590–603.
  • Xu, Y., Yao, X., Zhuang, Y., Duan, W., Zhang, X., Hu, S., & Dong, X. (2021). The effects of fiber inclusion on the evolution of desiccation cracking in soil-cement. Materials, 14(17), 4974. https://doi.org/10.3390/ma14174974
  • Xu, J. J., Zhang, H., Tang, C. S., Cheng, Q., Liu, B., & Shi, B. (2022a). Automatic soil desiccation crack recognition using deep learning. Géotechnique, 72(4), 337–349. https://doi.org/10.1680/jgeot.20.P.091
  • Xu, J. J., Zhang, H., Tang, C. S., Cheng, Q., Tian, B. G., Liu, B., & Shi, B. (2022b). Automatic soil crack recognition under uneven illumination condition with the application of artificial intelligence. Engineering Geology, 296, 106495. https://doi.org/10.1016/j.enggeo.2021.106495
  • Yan, C., Wang, T., Ke, W., & Wang, G. (2021). A 2D FDEM-based moisture diffusion–fracture coupling model for simulating soil desiccation cracking. Acta Geotechnica, 16(8), 2609–2628. https://doi.org/10.1007/s11440-021-01297-4
  • Yan, H., Jivkov, A. P., & Sedighi, M. (2022). Modelling soil desiccation cracking by peridynamics. Géotechnique, 1–13. https://doi.org/10.1680/jgeot.21.00032
  • Yerro, A., Alonso, E. E., & Pinyol, N. M. (2015). The material point method for unsaturated soils. Géotechnique, 65(3), 201–217. https://doi.org/10.1680/geot.14.P.163
  • Yuan, S., Yang, B., Liu, J., & Cao, B. (2021). Influence of fibers on desiccation cracks in sodic soil. Bulletin of Engineering Geology and the Environment, 80(4), 3207–3216. https://doi.org/10.1007/s10064-021-02123-7
  • Yesiller, N., Miller, C. J., Inci, G., & Yaldo, K. (2000). Desiccation and cracking behavior of three compacted landfill liner soils. Engineering Geology, 57(1-2), 105–121. https://doi.org/10.1016/S0013-7952(00)00022-3
  • Zaidi, M., Ahfir, N. D., Alem, A., Taibi, S., El Mansouri, B., Zhang, Y., & Wang, H. (2021). Use of X-ray computed tomography for studying the desiccation cracking and self-healing of fine soil during drying–wetting paths. Engineering Geology, 292, 106255. https://doi.org/10.1016/j.enggeo.2021.106255
  • Zhang, X. D., Chen, Y. G., Ye, W. M., Cui, Y. J., Deng, Y. F., & Chen, B. (2017). Effect of salt concentration on desiccation cracking behavior of GMZ bentonite. Environmental Earth Sciences, 76(15), 1–10. https://doi.org/10.1007/s12665-017-6872-6
  • Zhang, J. M., Luo, Y., Zhou, Z., Chong, L., Victor, C., & Zhang, Y. F. (2021). Effects of preferential flow induced by desiccation cracks on slope stability. Engineering Geology, 288, 106164. https://doi.org/10.1016/j.enggeo.2021.106164
  • Zhang, T., Deng, Y., Cui, Y., Lan, H., Zhang, F., & Zhang, H. (2019a). Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition. Engineering Geology, 251, 11–23. https://doi.org/10.1016/j.enggeo.2019.02.007
  • Zhang, T., Deng, Y., Lan, H., Zhang, F., Zhang, H., Wang, C., Tan, Y., & Yu, R. (2019b). Experimental investigation of the compactability and cracking behavior of polyacrylamide-treated saline soil in Gansu Province, China. Polymers, 11(1), 90. https://doi.org/10.3390/polym11010090
  • Zhang, Y., Ye, W. M., Chen, B., Chen, Y. G., & Ye, B. (2016). Desiccation of NaCl-contaminated soil of earthen heritages in the Site of Yar City, northwest China. Applied Clay Science, 124, 1–10.
  • Zhao, B., & Santamarina, J. C. (2020). Desiccation crack formation beneath the surface. Géotechnique, 70(2), 181–186. https://doi.org/10.1680/jgeot.18.T.019
  • Zhou, Z., Zhou, C., Tang, C., Xu, H., Shi, X., & Mark, V. (2022). 3D characterization of desiccation cracking in clayey soils using a structured light scanner. Engineering Geology, 299.
  • Zhuo, Z., Zhu, C., Tang, C. S., Xu, H., Shi, X., & Mark, V. (2022). 3D characterization of desiccation cracking in clayey soils using a structured light scanner. Engineering Geology, 299, 106566. https://doi.org/10.1016/j.enggeo.2022.106566
  • Zeng, L., Liu, J., Gao, Q. F., & Bian, H. (2019a). Evolution characteristics of the cracks in the completely disintegrated carbonaceous mudstone subjected to cyclic wetting and drying. Advances in Civil Engineering, 2019, 1–10. https://doi.org/10.1155/2019/1279695
  • Zeng, H., Tang, C. S., Cheng, Q., Inyang, H. I., Rong, D. Z., Lin, L., & Shi, B. (2019b). Coupling effects of interfacial friction and layer thickness on soil desiccation cracking behavior. Engineering Geology, 260, 105220. https://doi.org/10.1016/j.enggeo.2019.105220
  • Zeng, H., Tang, C. S., Zhu, C., Vahedifard, F., Cheng, Q., & Shi, B. (2022). Desiccation cracking of soil subjected to different environmental relative humidity conditions. Engineering Geology, 297, 106536. https://doi.org/10.1016/j.enggeo.2022.106536

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.