311
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Study on calcareous sand treated by MICP in different NaCl concentrations

, ORCID Icon, , &
Pages 3137-3156 | Received 15 Jun 2022, Accepted 24 Sep 2022, Published online: 04 Oct 2022

References

  • Abbas, A. S., Fazakas, E., & Torok, T. I. (2018). Corrosion studies of steel rebar samples in neutral sodium chloride solution also in the presence of a bio-based (green) inhibitor. The International Journal of Corrosion and Scale Inhibition, 7(1), 38–47.
  • Aleksandrov, A. A., Dzhuraeva, E. V., & Utenkov, V. F. (2012). Viscosity of aqueous solutions of sodium chloride. High Temperature, 50(3), 354–358. https://doi.org/10.1134/S0018151X12030029
  • ASTM. (2017). Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. ASTM.
  • ASTM. (2013). Standard test method for load controlled cyclic triaxial strength of soil. ASTM D5311. ASTM.
  • Cabalar, A. F., Awraheem, M. H., & Khalaf, M. M. (2018). Geotechnical properties of a low-plasticity clay with biopolymer. Journal of Materials in Civil Engineering, 30(8), 10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002380
  • Cabalar, A. F., Karabash, Z., & Erkmen, O. (2018). Stiffness of a biocemented sand at small strains. European Journal of Environmental and Civil Engineering, 22(10), 1238–1256. https://doi.org/10.1080/19648189.2016.1248791
  • Cabalar, A. F., Wiszniewski, M., & Skutnik, Z. (2017). Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand. Soil Mechanics and Foundation Engineering, 54(5), 356–361. https://doi.org/10.1007/s11204-017-9481-1
  • Castro-Mejía, J., Castro-Barrera, T., Hernández-Hernández, L. H., Arredondo-Figueroa, J. L., Castro-Mejía, G., & de Lara-Andrade, R. (2011). Effects of salinity on growth and survival in five Artemia franciscana (Anostraca: Artemiidae) populations from Mexico Pacific Coast. Revista de Biologia Tropical, 59(1), 199–206.
  • Cheng, L., Shahin, M., & Cord-Ruwisch, R. (2014). Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique, 64(12), 1010–1013. https://doi.org/10.1680/geot.14.T.025
  • Choi, S. J., Yang, S. Y., & Yoon, K. S. (2021). Lactic acid bacteria starter in combination with sodium chloride controls pathogenic Escherichia coli (EPEC, ETEC, and EHEC) in kimchi. Food Microbiology, 100, 103868. https://doi.org/10.1016/j.fm.2021.103868
  • DeJong, J. T., Fritzges, M. B., & Nusslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
  • Dikshit, R., Dey, A., & Kumar, A. (2022). Sporosarcina pasteurii can efficiently precipitate calcium carbonate at high salt concentration. Geomicrobiology Journal, 39(2), 123–134. https://doi.org/10.1080/01490451.2021.2019856
  • Fan, Y., Hu, X., Zhao, Y., Wu, M., Wang, S., Wang, P., Xue, Y., & Zhu, S. (2020). Urease producing microorganisms for coal dust suppression isolated from coal: Characterization and comparative study. Advanced Powder Technology, 31(9), 4095–4106. https://doi.org/10.1016/j.apt.2020.08.014
  • Feng, L., Zhang, S. T., Qiang, Y. J., Xu, Y., Guo, L., Madkour, L. H., & Chen, S. J. (2018). Experimental and theoretical investigation of thiazolyl blue as a corrosion inhibitor for copper in neutral sodium chloride solution. Materials, 11(6), 1042. https://doi.org/10.3390/ma11061042
  • Feng, K., & Montoya, B. M. (2017). Quantifying level of microbial-induced cementation for cyclically loaded sand. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 4. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682
  • Green, R. A., Olson, S. M., Cox, B. R., Rix, G. J., Rathje, E., Bachhuber, J., French, J., Lasley, S., & Martin, N. (2011). Geotechnical aspects of failures at Port-au-Prince seaport during the 12 January 2010 Haiti earthquake. Earthquake Spectra, 27(1_suppl1), 43–65. https://doi.org/10.1193/1.3636440
  • He, K., & Ye, J. (2021). Physical modeling of the dynamics of a revetment breakwater built on reclaimed coral calcareous sand foundation in the South China Sea-tsunami wave. Bulletin of Engineering Geology and the Environment, 80(4), 3315–3330. https://doi.org/10.1007/s10064-021-02122-8
  • Hrenovic, J., & Ivankovic, T. (2009). Survival of Escherichia coli and Acinetobacter junii at various concentrations of sodium chloride. EurAsian Journal of Biosciences, 17(3), 144–151. https://doi.org/10.5053/ejobios.2009.3.0.18
  • Islam, M. T., Chittoori, B. C. S., & Burbank, M. (2020). Evaluating the applicability of biostimulated calcium carbonate precipitation to stabilize clayey soils. Journal of Materials in Civil Engineering, 32(3), 11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003036
  • Jimoh, O. A., Ariffin, K. S., Hussin, H. B., & Temitope, A. E. (2018). Synthesis of precipitated calcium carbonate: A review. Carbonates and Evaporites, 33(2), 331–346. https://doi.org/10.1007/s13146-017-0341-x
  • Katsuhara, M. (1997). Apoptosis-like cell death in barley roots under salt stress. Plant and Cell Physiology, 38(9), 1091–1093. https://doi.org/10.1093/oxfordjournals.pcp.a029277
  • Lee, S., Chung, M., Park, H. M., Song, K. I., & Chang, I. (2019). Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka. Journal of Materials in Civil Engineering, 31(11), 9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909
  • Li, M. D., Li, L., Ogbonnaya, U., Wen, K. J., Tian, A. G., & Amini, F. (2016). Influence of fiber addition on mechanical properties of MICP-treated sand. Journal of Materials in Civil Engineering, 28(4), 10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442
  • Liu, X., Li, S., & Sun, L. Q. (2020). The study of dynamic properties of carbonate sand through a laboratory database. Bulletin of Engineering Geology and the Environment, 79(7), 3843–3855. https://doi.org/10.1007/s10064-020-01785-z
  • Liu, Y. L., Thibodeaux, D., Gamble, G., Bauer, P., & VanDerveer, D. (2012). Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Applied Spectroscopy, 66(8), 983–986. https://doi.org/10.1366/12-06611
  • McGrath, K. (2001). Probing material formation in the presence of organic and biological molecules. Advanced Materials, 13(12–13), 989–992. https://doi.org/10.1002/1521-4095(200107)13:12/13<989::AID-ADMA989>3.0.CO;2-G
  • Cui, M.-J., Zheng, J.-J., Zhang, R.-J., Lai, H.-J., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 12(5), 971–986. https://doi.org/10.1007/s11440-017-0574-9
  • Minto, J. M., Lunn, R. J., & El Mountassir, G. (2019). Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation. Water Resources Research, 55(8), 7229–7245. https://doi.org/10.1029/2019WR025153
  • Montoya, B. M., & DeJong, J. T. (2015). Stress-strain behavior of sands cemented by microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 141(6), 10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302
  • Mortensen, B., Haber, M., DeJong, J., Caslake, L., & Nelson, D. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111(2), 338–349.
  • Omar, S., Abdel-Sater, M., Khallil, A., & Abd-Alla, M. (1994). Growth and enzyme activities of fungi and bacteria in soil salinized with sodium chloride. Folia Microbiologica, 39(1), 23–28. https://doi.org/10.1007/BF02814524
  • Phillips, A. J., Cunningham, A. B., Gerlach, R., Hiebert, R., Hwang, C. C., Lomans, B. P., Westrich, J., Mantilla, C., Kirksey, J., Esposito, R., & Spangler, L. (2016). Fracture sealing with microbially-induced calcium carbonate precipitation: A field study. Environmental Science & Technology, 50(7), 4111–4117. https://doi.org/10.1021/acs.est.5b05559
  • Qian, C. X., Ren, X. W., Rui, Y. F., & Wang, K. (2021). Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species. Biochemical Engineering Journal. 176, 10.
  • Qiu, R., Tong, H., Gu, M., & Yuan, J. (2020). Strength and micromechanism analysis of microbial solidified sand with carbon fiber. Advances in Civil Engineering, 2020, 1–10. https://doi.org/10.1155/2020/8876617
  • Safavizadeh, S., Montoya, B. M., & Gabr, M. A. (2018). Treating coal ash with microbial-induced calcium carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 144(11), 1. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001956
  • Shan, Y., Liang, J. L., Tong, H. W., Yuan, J., & Zhao, J. T. (2022). Effect of different fibers on small-strain dynamic properties of microbially induced calcite precipitation-fiber combined reinforced calcareous sand. Construction and Building Materials, 322, 126343. https://doi.org/10.1016/j.conbuildmat.2022.126343
  • Shan, Y., Zhao, J. T., Tong, H. W., Yuan, J., Lei, D. L., & Li, Y. Y. (2022). Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation. Soil Dynamics and Earthquake Engineering, 161, 107419. https://doi.org/10.1016/j.soildyn.2022.107419
  • Seed, H. B., & Idriss, I. (1982). Ground motions and soil liquefaction during earthquakes. Monograph series. Earthquake Engineering Research Institute.
  • Vahdani, S., Pyke, R., & Siriprusanen, U. (1994). Liquefaction of calcareous sands and lateral spreading experienced in Guam as a result of the 1993 Guam earthquake (Technical Report). NCEER
  • Vahed, S. Z., Forouhandeh, H., Hassanzadeh, S., Klenk, H. P., Hejazi, M. A., & Hejazi, M. S. (2011). Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiology, 80(6), 834–841. https://doi.org/10.1134/S0026261711060191
  • Valle, C., Camacho, B. I., Stokoe, K. H., & Rauch, A. F. (2003). Comparison of the dynamic properties and undrained shear strengths of offshore calcareous sand and artificially cemented sand [Paper presentation]. Proceeding of the International Conference on Offshore Mechanics and Arctic Engineering (pp. 133–141). https://doi.org/10.1115/OMAE2003-37091
  • van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R. L., & van Loosdrecht, M. C. M. (2010). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382
  • Vucetic, M., & Mortezaie, A. (2015). Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains. Soil Dynamics and Earthquake Engineering, 70, 60–72. https://doi.org/10.1016/j.soildyn.2014.12.001
  • Whiffin, V. S., Paassen, L. A. V., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. https://doi.org/10.1080/01490450701436505
  • Xiao, P., Liu, H. L., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 56(12), 1849–1862. https://doi.org/10.1139/cgj-2018-0573
  • Xiao, P., Liu, H. L., Xiao, Y., Stuedlein, A. W., & Evans, T. M. (2018). Liquefaction resistance of bio-cemented calcareous sand. Soil Dynamics and Earthquake Engineering, 107, 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008
  • Xiao, Y., Wang, Y., Desai, C. S., Jiang, X., & Liu, H. (2019). Strength and deformation responses of biocemented sands using a temperature-controlled method. International Journal of Geomechanics, 19(11), 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497
  • Yang, Y., Chu, J., Liu, H. L., & Cheng, L. (2022). Construction of water pond using bioslurry-induced biocementation. Journal of Materials in Civil Engineering, 34(3), 5. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004109
  • Yu, T., Souli, H., Pechaud, Y., & Fleureau, J. M. (2022). Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement—A review. European Journal of Environmental and Civil Engineering, 26(6), 2218–2233. https://doi.org/10.1080/19648189.2020.1755370
  • Yuan, J., Lei, D. L., Shan, Y., Tong, H. W., Fang, X. T., & Zhao, J. T. (2022). Direct shear creep characteristics of sand treated with microbial-induced calcite precipitation. International Journal of Civil Engineering, 20(7), 763–777. https://doi.org/10.1007/s40999-021-00696-8
  • Zakowski, K., Narozny, M., Szocinski, M., & Darowicki, K. (2014). Influence of water salinity on corrosion risk—The case of the southern Baltic Sea coast. Environmental Monitoring and Assessment, 186(8), 4871–4879. https://doi.org/10.1007/s10661-014-3744-3
  • Zamani, A., Xiao, P., Baumer, T., Carey, T. J., Sawyer, B., DeJong, J. T., & Boulanger, R. W. (2021). Mitigation of liquefaction triggering and foundation settlement by MICP treatment. Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 15. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596
  • Zhao, J. T., Tong, H. W., Shan, Y., Yuan, J., Peng, Q. W., & Liang, J. L. (2021). Effects of different types of fibers on the physical and mechanical properties of MICP-treated calcareous sand. Materials, 14(2), 268. https://doi.org/10.3390/ma14020268
  • Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013
  • Zhao, Y., Xiao, Z. Y., Fan, C. B., Shen, W. Q., Wang, Q., & Liu, P. H. (2020). Comparative mechanical behaviors of four fiber-reinforced sand cemented by microbially induced carbonate precipitation. Bulletin of Engineering Geology and the Environment, 79(6), 3075–3086. https://doi.org/10.1007/s10064-020-01756-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.