264
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Influence of the oval hole on rock mechanical mechanism under uniaxial and biaxial compression: insights from the combined finite-discrete element method

, , , , &
Pages 3324-3342 | Received 03 May 2022, Accepted 05 Oct 2022, Published online: 21 Oct 2022

References

  • Ashby, M. F., & Hallam, S. D. (1986). The failure of brittle solids containing small cracks under compressive stress states. Acta Metallurgica, 34(3), 497–510. https://doi.org/10.1016/0001-6160(86)90086-6
  • Batinić, M., Smoljanović, H., Munjiza, A., & Mihanović, A. (2017). GPU based parallel FDEM for analysis of cable structures. Građevinar, 69(12), 1085–1092.
  • Cai, M. (2013). Fracture initiation and propagation in a Brazilian disc with a plane interface: A numerical study. Rock Mechanics and Rock Engineering, 46(2), 289–302. https://doi.org/10.1007/s00603-012-0331-1
  • Cai, M. F., He, M. C., & Liu, D. Y. (2002). Rock mechanics and Engineering. Science Press.
  • Chen, G. Q., Zhao, C., Wei, T., & Wang, J. C. (2018). Evaluation method of brittle characteristics of rock based on full stress-strain curve and crack initiation stress. Chinese Journal of Rock Mechanics and Engineering, 37(01), 51–59.
  • D'albano, S. (2014). Computational and algorithmic solutions for large scale combined finite-discrete elements simulations. Queen Mary University of London.
  • Deng, P. H., Liu, Q. S., Huang, X., Liu, Q., Ma, H., & Li, W. (2021). Acquisition of normal contact stiffness and its influence on rock crack propagation for the combined finite-discrete element method (FDEM). Engineering Fracture Mechanics, 242, 107459. https://doi.org/10.1016/j.engfracmech.2020.107459
  • Du, M. R., Jing, H. W., Su, H. J., & Zhu, T. T. (2016). Experimental study of strength and failure characteristics of sandstone containing prefabricated elliptical hole. Journal of China University of Mining & Technology, 45(6), 1164–1171.
  • Du, M. R., Jing, H. W., & Su, H. J. (2017). Study on the influence of elliptical hole on strength and deformation characteristics of sandstone sample. Journal of Mining and Safety Engineering, 34(1), 141–147.
  • Fan, X., Li, K., Lai, H., Xie, Y., Cao, R., & Zheng, J. (2018). Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: A particle mechanics approach. Computers and Geotechnics, 102, 28–38. https://doi.org/10.1016/j.compgeo.2018.06.002
  • Fukuda, D., Mohammadnejad, M., Liu, H., Zhang, Q., Zhao, J., Dehkhoda, S., Chan, A., Kodama, J-i., & Fujii, Y. (2020). Development of a 3D hybrid finite-discrete element simulator based on GPGPU-parallelized computation for modelling rock fracturing under quasi-static and dynamic loading conditions. Rock Mechanics and Rock Engineering, 53(3), 1079–1112. https://doi.org/10.1007/s00603-019-01960-z
  • Gui, Y. L., Shang, J. L., Ma, J. J., & Zhao, Z. Y. (2019). Numerical study of the circular opening effect on mechanical behaviour of rock under confinement. Journal of Rock Mechanics and Geotechnical Engineering, 11(6), 1201–1210. https://doi.org/10.1016/j.jrmge.2019.07.003
  • Gui, Y. L., Zhao, Z. Y., Zhang, C., & Ma, S. Q. (2017). Numerical investigation of the opening effect on the mechanical behaviours in rocks under uniaxial loading using hybrid continuum-discrete element method. Computers and Geotechnics, 90, 55–72. https://doi.org/10.1016/j.compgeo.2017.05.021
  • Guo, L., Xiang, J., Latham, J. P., & Izzuddin, B. (2016). A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method. Engineering Fracture Mechanics, 151, 70–91. https://doi.org/10.1016/j.engfracmech.2015.11.006
  • Horii, H., & Nemat-Nasser, S. (1985). Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. Journal of Geophysical Research, 90(B4), 3105–3125. https://doi.org/10.1029/JB090iB04p03105
  • Huang, Y. H., Yang, S. Q., & Tian, W. L. (2019). Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression. Fatigue & Fracture of Engineering Materials & Structures, 42(6), 1341–1356. https://doi.org/10.1111/ffe.12990
  • Huang, Y. H., Yang, S. Q., Hall, M. R., Tian, W. L., & Yin, P. F. (2018). Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity. Archives of Civil and Mechanical Engineering, 18(4), 1359–1373. https://doi.org/10.1016/j.acme.2018.04.005
  • Huang, Y. H., Yang, S. Q., Ranjith, P. G., & Zhao, J. (2017). Strength failure behaviour and crack evolution mechanism of granite containing pre-existing non-coplanar holes: Experimental study and particle flow modelling. Computers and Geotechnics, 88, 182–198. https://doi.org/10.1016/j.compgeo.2017.03.015
  • Knight, E. E., Rougier, E., Lei, Z., Euser, B., Chau, V., Boyce, S. H., Gao, K., Okubo, K., & Froment, M. (2020). HOSS: An implementation of the combined finite-discrete element method. Computational Particle Mechanics, 7(5), 765–787. https://doi.org/10.1007/s40571-020-00349-y
  • Latham, J. P., Xiang, J., Farsi, A., Joulin, C., & Karantzoulis, N. (2020). A class of particulate problems suited to FDEM requiring accurate simulation of shape effects in packed granular structures. Computational Particle Mechanics, 7(5), 975–986. https://doi.org/10.1007/s40571-019-00294-5
  • Latham, J. P., Xiang, J., Harrison, J. P., & Munjiza, A. (2010). Development of virtual geoscience simulation tools, VGeST for irregular blocky rock applications in rock engineering using the combined finite discrete element method, FEMDEM [Paper presentation]. In 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, June. OnePetro.
  • Li, D. Y., Zhu, Q. Q., Zhou, Z. L., Li, X. B., & Ranjith, P. G. (2017). Fracture analysis of marble specimens with a hole under uniaxial compression by digital image correlation. Engineering Fracture Mechanics, 183, 109–124. https://doi.org/10.1016/j.engfracmech.2017.05.035
  • Li, P., Ren, F. H., Cai, M. F., Guo, Q. F., Wang, H. F., & Liu, K. (2019). Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading. International Journal of Minerals, Metallurgy, and Materials, 26(10), 1217–1230. https://doi.org/10.1007/s12613-019-1887-5
  • Li, Y., Yang, S. Q., & Li, Y. (2021). Experiment and numerical simulation on cracking behaviour of marble containing double elliptic holes under uniaxial compression. Theoretical and Applied Fracture Mechanics, 112, 102928. https://doi.org/10.1016/j.tafmec.2021.102928
  • Lin, P., Wong, R., & Tang, C. A. (2015). Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes. International Journal of Rock Mechanics and Mining Sciences, 77(4–6), 313–327. https://doi.org/10.1016/j.ijrmms.2015.04.017
  • Lisjak, A., Grasselli, G., & Vietor, T. (2014). Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. International Journal of Rock Mechanics and Mining Sciences, 65, 96–115. https://doi.org/10.1016/j.ijrmms.2013.10.006
  • Lisjak, A., Mahabadi, O. K., He, L., Tatone, B. S. A., Kaifosh, P., Haque, S. A., & Grasselli, G. (2018). Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing. Computers and Geotechnics, 100, 84–96. https://doi.org/10.1016/j.compgeo.2018.04.011
  • Lisjak, A., Tatone, B. S. A., Mahabadi, O. K., Grasselli, G., Marschall, P., Lanyon, G. W., Vaissière, R., D. L., Shao, H., Leung, H., & Nussbaum, C. (2016). Hybrid finite-discrete element simulation of the EDZ formation and mechanical sealing process around a microtunnel in Opalinus Clay. Rock Mechanics and Rock Engineering, 49(5), 1849–1873. https://doi.org/10.1007/s00603-015-0847-2
  • Liu, E. L., & Shen, Z. J. (2005). Study on brittleness of geotechnical materials. Journal of Rock Mechanics and Geotechnical Engineering, 24(19), 3449–3449.
  • Liu, Q. S., Deng, P. H., Bi, C., Li, W. W., & Liu, J. (2019). FDEM numerical simulation of the fracture and extraction process of soft surrounding rock mass and its rockbolt-shotcrete-grouting reinforcement methods in the deep tunnel. Rock and Soil Mechanics, 40(10), 4065–4083.
  • Liu, X. R., Yang, S. Q., Huang, Y. H., & Cheng, J. L. (2019). Experimental study on the strength and fracture mechanism of sandstone containing elliptical holes and fissures under uniaxial compression. Engineering Fracture Mechanics, 205, 205–217. https://doi.org/10.1016/j.engfracmech.2018.11.028
  • Mahabadi, O. K., Lisjak, A., Munjiza, A., & Grasselli, G. (2012). Y-Geo: New combined finite-discrete element numerical code for geomechanical applications. International Journal of Geomechanics, 12(6), 676–688. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216
  • Mohammadnejad, M., Fukuda, D., Liu, H. Y., Dehkhoda, S., & Chan, A. J. C. P. M. (2020). GPGPU-parallelized 3D combined finite–discrete element modelling of rock fracture with adaptive contact activation approach. Computational Particle Mechanics, 7(5), 849–867. https://doi.org/10.1007/s40571-019-00287-4
  • Munjiza, A. (2004). The combined finite-discrete element method. John Wiley & Sons, Ltd.
  • Munjiza, A., Andrews, K. R. F., & White, J. K. (1999). Combined single and smeared crack model in combined finitediscrete element analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 44(1), 41–57.
  • Tatone, B. S., & Grasselli, G. (2015). A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations. International Journal of Rock Mechanics and Mining Sciences, 75, 56–72. https://doi.org/10.1016/j.ijrmms.2015.01.011
  • Tian, W. L., Yang, S. Q., & Huang, Y. H. (2020). Discrete element modelling on crack evolution behaviour of sandstone containing two oval flaws under uniaxial compression. Arabian Journal of Geosciences, 13(11), 1–19. https://doi.org/10.1007/s12517-020-05348-0
  • Vlachopoulos, N., & Vazaios, I. (2018). The numerical simulation of hard rocks for tunnelling purposes at great depths: A comparison between the hybrid FDEM method and continuous techniques. Advances in Civil Engineering, 2018, 1–18. https://doi.org/10.1155/2018/3868716
  • Wong, R., & Lin, P. (2015). Numerical study of stress distribution and crack coalescence mechanisms of a solid containing multiple holes. International Journal of Rock Mechanics and Mining Sciences, 79, 41–54. https://doi.org/10.1016/j.ijrmms.2015.08.003
  • Wu, H., Zhao, G., & Liang, W. (2020). Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: A comparative analysis of five hole shapes. Theoretical and Applied Fracture Mechanics, 105, 102433. https://doi.org/10.1016/j.tafmec.2019.102433
  • Wu, T. H., Gao, Y. T., Zhou, Y., & Li, J. W. (2020). Experimental and numerical study on the interaction between holes and fissures in rock-like materials under uniaxial compression. Theoretical and Applied Fracture Mechanics, 106, 102488. https://doi.org/10.1016/j.tafmec.2020.102488
  • Xia, Y. J., Li, L. C., Tang, C. A., Ma, S., Li, M., & Bao, C. Y. (2016). Rock brittleness evaluation based on stress dropping rate after peak stress and energy ratio. Chinese Journal of Rock Mechanics and Engineering, 35(06), 1141–1154.
  • Yan, C. Z., & Jiao, Y. Y. (2019). FDEM‐TH3D: a three‐dimensional coupled hydrothermal model for fractured rock. International Journal for Numerical and Analytical Methods in Geomechanics, 43(1), 415–440. https://doi.org/10.1002/nag.2869
  • Yan, C. Z., Wang, X., Huang, D., & Wang, G. (2021). A new 3D continuous-discontinuous heat conduction model and coupled thermomechanical model for simulating the thermal cracking of brittle materials. International Journal of Solids and Structures, 229, 111123. https://doi.org/10.1016/j.ijsolstr.2021.111123
  • Yan, C. Z., Xie, X., Ren, Y., Ke, W., & Wang, G. (2022). A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing. International Journal of Rock Mechanics and Mining Sciences, 149, 104964. https://doi.org/10.1016/j.ijrmms.2021.104964
  • Yang, P., Xiang, J., Chen, M., Fang, F., Pavlidis, D., Latham, J. P., & Pain, C. C. (2017). The immersed-body gas-solid interaction model for blast analysis in fractured solid media. International Journal of Rock Mechanics and Mining Sciences, 91, 119–132. https://doi.org/10.1016/j.ijrmms.2016.10.006
  • Yang, S. Q., Huang, Y. H., Tian, W. L., & Zhu, J. B. (2017). An experimental investigation on strength, deformation and crack evolution behaviour of sandstone containing two oval flaws under uniaxial compression. Engineering Geology, 217, 35–48. https://doi.org/10.1016/j.enggeo.2016.12.004
  • Yang, S. Q., Jiang, Y. Z., Xu, W. Y., & Chen, X. Q. (2008). Experimental investigation on strength and failure behaviour of pre-cracked marble under conventional triaxial compression. International Journal of Solids and Structures, 45(17), 4796–4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023
  • Yang, S. Q., Tian, W. L., Huang, Y. H., Ma, Z. G., Fan, L. F., & Wu, Z. J. (2018). Experimental and discrete element modelling on cracking behaviour of sandstone containing a single oval flaw under uniaxial compression. Engineering Fracture Mechanics, 194, 154–174. https://doi.org/10.1016/j.engfracmech.2018.03.003
  • Zhang, K., Liu, X., Liu, W., & Zhang, S. (2021). Influence of weak inclusions on the fracturing and fractal behaviour of a jointed rock mass containing an opening: Experimental and numerical studies. Computers and Geotechnics, 132, 104011. https://doi.org/10.1016/j.compgeo.2021.104011
  • Zhang, Z. Q., Li, N., Chen, F. F., & Zhang, P. (2009). Review and status of research on failure mode of nonpenetrative fractured rock mass. Rock and Soil Mechanics, 30(S2), 142–148.
  • Zhao, X. D., Zhang, H. X., & Zhu, W. C. (2014). Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression. Transactions of Nonferrous Metals Society of China, 24(3), 806–815. https://doi.org/10.1016/S1003-6326(14)63129-0
  • Zhong, Z. B., Deng, R. G., Lv, L., Fu, X. M., & Yu, J. (2018). Fracture mechanism of naturally cracked rock around an inverted U-shaped opening in a biaxial compression test. International Journal of Rock Mechanics and Mining Sciences, 103, 242–253. https://doi.org/10.1016/j.ijrmms.2018.01.047
  • Zhou, Y., Liu, B., & Li, W. (2017). Mesoscopic mechanical properties of rock-like material containing two circular holes under uniaxial compression. Chinese Journal of Rock Mechanics and Engineering, 36(011), 2662–2671.
  • Zhu, Q. Q., Li, D. Y., & Li, X. B. (2019). Experimental study on failure and mechanical characteristics of marble containing a prefabricated elliptical hole. Chinese Journal of Rock Mechanics and Engineering, 38(A01), 2724–2733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.