75
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Shear behavior of sandstone fractures after exposure to CO2 environment

&
Pages 3402-3424 | Received 11 Jun 2022, Accepted 10 Oct 2022, Published online: 18 Nov 2022

References

  • Bahaaddini, M., Hagan, P. C., Mitra, R., & Hebblewhite, B. K. (2015). Parametric study of smooth joint parameters on the shear behaviour of rock joints. Rock Mechanics and Rock Engineering, 48(3), 923–940. https://doi.org/10.1007/s00603-014-0641-6
  • Bakker, E., Hangx, S. J. T., Niemeijer, A. R., & Spiers, C. J. (2016). Frictional behaviour and transport properties of simulated fault gouges derived from a natural CO2 reservoir. International Journal of Greenhouse Gas Control, 54, 70–83. https://doi.org/10.1016/j.ijggc.2016.08.029
  • Bandis, S., Lumsden, A. C., & Barton, N. (1981). Experimental studies of scale effects on the shear behaviour of rock joints. International Journal of Rock Mechanics and Mining Sciences, 18(1), 1–21. https://doi.org/10.1016/0148-9062(81)90262-X
  • Barton, N., & Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock Mechanics Felsmechanik MeCanique Des Roches, 10(1–2), 1–54. https://doi.org/10.1007/BF01261801
  • Bieniawski, Z. T., & Hawkes, I. (1978). Suggested methods for determining tensile strength of rock materials. International Journal of Rock Mechanics and Mining Sciences, 15(3), 99–103.
  • Bond, C. E., Wightman, R., & Ringrose, P. S. (2013). The influence of fracture anisotropy on CO2 flow. Geophysical Research Letters, 40(7), 1284–1289. https://doi.org/10.1002/grl.50313
  • Bradshaw, J., & Dance, T. (2004). Mapping geological storage prospectivity of CO2 for the world’s sedimentary basins and regional source to sink matching. 7th International Conference on Greenhouse Gas Technologies, 7, 583–591.
  • Busch, A., Alles, S., Krooss, B. M., Stanjek, H., & Dewhurst, D. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235. https://doi.org/10.1016/j.egypro.2009.02.107
  • Cao, P., Karpyn, Z. T., & Li, L. (2015). Self‐healing of cement fractures under dynamic flow of CO2‐rich brine. Water Resources Research, 51(6), 4684–4701. https://doi.org/10.1111/j.1752-1688.1969.tb04897.x
  • D. G. F. Report. (2008). D42 GeoCapacity final report. Assessing European capacity for geological storage of carbon dioxide.
  • D16, WP 2 Report Storage Capacity. (2008). EU GeoCapacity. Assessing European capacity for geological storage of carbon dioxide.
  • Dimadis, G. C., Bacasis, I., & Karampasis, M. (2017). Impact of CO2 on mechanical properties of sandstone during sequestration for climate change mitigation. In 10th International Scientific Conference on Energy and Climate Change, 89–98.
  • Dimadis, G. C., Dimadi, A., & Bacasis, I. (2014). Influence of fracture roughness on aperture fracture surface and in fluid flow on coarse-grained marble, experimental results. Journal of Geoscience and Environment Protection, 2(5), 59–67. https://doi.org/10.4236/gep.2014.25009
  • Dyskin, A. V., & Pasternak, E. (2011). Friction and localization associated with non-spherical particles. In S. Bonelli, C. Dascalu, & F. Nicot (Eds.), Advances in bifurcation and degradation in geomaterials, (Vol. 1, pp. 53–58). Springer.
  • Egermann, P., Bemer, E., & Zinszner, B. (2006). An experimental investigation of the rock properties evolution associated to different levels of CO2 injection like alteration processes. In International Symposium of the Society of Core Analysts, pp. 1–15.
  • Espinoza, D. N., Jung, H., Major, J. R., Sun, Z., Ramos, M. J., Eichhubl, P., Balhoff, M. T., Choens, R. C., & Dewers, T. A. (2018). CO2 charged brines changed rock strength and stiffness at crystal Geyser, Utah: Implications for leaking subsurface CO2 storage reservoirs. International Journal of Greenhouse Gas Control, 73, 16–28. https://doi.org/10.1016/j.ijggc.2018.03.017
  • Folk, R. L., Andrews, P. B., & Lewis, D. W. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4), 937–968. https://doi.org/10.1080/00288306.1970.10418211
  • Global CCS Institute. (n.d.). www.globalccsinstitute.com.
  • Jaeger, J. C. (1959). The frictional properties of joints in rock. Geofisica pura e applicata, 43(1), 148–158. https://doi.org/10.1007/BF01993552
  • Juhlin, C. (1998). The very deep hole concept - geoscientific appraisal of conditions at great depth.
  • Kempka, T., & Kühn, M. (2013). Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environmental Earth Sciences, 70(8), 3675–3685. https://doi.org/10.1007/s12665-013-2614-6
  • Kojima, T., Nagamine, A., Ueno, N., & Uemiya, S. (1997). Absorption and fixation of carbon dioxide by rock weathering. Energy Conversion and Management, 38, S461–S466. https://doi.org/10.1016/S0196-8904(96)00311-1
  • Kontopoulos, N., Fokianou, T., Zelilidis, A., Alexiadis, C., & Rigakis, N. (1999). Hydrocarbon potential of the middle Eocene-middle Miocene Mesohellenic piggy-back basin (central Greece): a case study. Marine and Petroleum Geology, 16(8), 811–824. https://doi.org/10.1016/S0264-8172(99)00031-8
  • Lamur, A., Kendrick, J. E., Eggertsson, G. H., Wall, R. J., Ashworth, J. D., & Lavallée, Y. (2017). The permeability of fractured rocks in pressurised volcanic and geothermal systems. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-05460-4
  • Le Guen, Y., Renard, F., Hellmann, R., Brosse, E., Collombet, M., Tisserand, D., & Gratier, J.-P. (2007). Enhanced deformation of limestone and sandstone in the presence of high Pco2 fluids. Journal of Geophysical Research, 112(B5), B05421. https://doi.org/10.1029/2006JB004637
  • Lee, H. S., & Cho, T. F. (2002). Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mechanics and Rock Engineering, 35(4), 299–318. https://doi.org/10.1007/s00603-002-0028-y.
  • Li, B., Jiang, Y., Koyama, T., Jing, L., & Tanabashi, Y. (2008). Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. International Journal of Rock Mechanics and Mining Sciences, 45(3), 362–375. Mar. https://doi.org/10.1016/j.ijrmms.2007.06.004
  • Liteanu, E., & Spiers, C. J. (2011). Fracture healing and transport properties of wellbore cement in the presence of supercritical CO2. Chemical Geology, 281(3-4), 195–210. https://doi.org/10.1016/j.chemgeo.2010.12.008
  • Madadi, M., & Saadatfar, M. (2017). A finite-element study of the influence of grain contacts on the elastic properties of unconsolidated sandstones. International Journal of Rock Mechanics and Mining Sciences, 93, 226–233. https://doi.org/10.1016/j.ijrmms.2017.02.008
  • Mair, K., Frye, K. M., & Marone, C. (2002). Influence of grain characteristics on the friction of granular shear zones. Journal of Geophysical Research: Solid Earth, 107, 1–9. https://doi.org/10.1029/2001JB000516
  • Metz, B., Davidson, O., de Coninck, H. C., Loos, M., & Meyer, L. A. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge University Press.
  • Myers, N. O. May (1962). Characterization of surface roughness. Wear, 5(3), 182–189. https://doi.org/10.1016/0043-1648(62)90002-9
  • Nouailletas, O., Perlot, C., Rivard, P., Ballivy, G., & Borderie, C. L. (2017). Impact of acid attack on the shear behaviour of a carbonate rock joint. Rock Mechanics and Rock Engineering, 50(6), 1439–1451. https://doi.org/10.1007/s00603-017-1182-6
  • Patton, F. D. (1966). Multiple modes of shear failure in rock. 1st Int. Congr. Rock Mech, 509–513.
  • Renard, F., Mair, K., & Gundersen, O. (2012). Surface roughness evolution on experimentally simulated faults. Journal of Structural Geology, 45, 101–112. https://doi.org/10.1016/j.jsg.2012.03.009
  • Rinaldi, A. P., Vilarrasa, V., Rutqvist, J., & Cappa, F. (2015). Fault reactivation during CO2 sequestration: Effects of well orientation on seismicity and leakage. Greenhouse Gases: Science and Technology, 5(5), 645–656. https://doi.org/10.1002/ghg.1511
  • Rochelle, C., & Moore, Y. (2002). The solubility of supercritical CO2 into pure water and synthetic Utsira porewater. Keyworth, Nottingham. http://www.sintef.no/project/IK23430000SACS/other_reports/BGS_WA3_CO2_solubility_expts.pdf.
  • Rutqvist, J. (2012). The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical and Geological Engineering, 30(3), 525–551. https://doi.org/10.1007/s10706-011-9491-0
  • Rutqvist, J. (2015). Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings. Geofluids, 15(1–2), 48–66. https://doi.org/10.1111/gfl.12089
  • Rutqvist, J., & Tsang, C. F. (2002). A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environmental Geology, 42(2–3), 296–305. https://doi.org/10.1007/s00254-001-0499-2
  • Rutqvist, J., Birkholzer, J. T., Cappa, F., & Tsang, C. F. (2007). Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management, 48(6), 1798–1807. https://doi.org/10.1016/j.enconman.2007.01.021
  • Rutter, E. H., & Mecklenburgh, J. (2018). Influence of normal and shear stress on the hydraulic transmissivity of thin cracks in a tight quartz sandstone, a granite and a shale. Journal of Geophysical Research: Solid Earth, 123(2), 1262–1285. https://doi.org/10.1002/2017JB014858
  • Takahashi, M., Mizoguchi, K., Kitamura, K., & Masuda, K. (2007). Effects of clay content on the frictional strength and fluid transport property of faults. Journal of Geophysical Research, 112(B8). https://doi.org/10.1029/2006JB004678
  • Tarasov, B. G., & Randolph, M. F. (2008). Frictionless shear at great depth and other paradoxes of hard rocks. International Journal of Rock Mechanics and Mining Sciences, 45(3), 316–328. https://doi.org/10.1016/j.ijrmms.2007.06.001
  • Tse, R., & Cruden, D. M. (1979). Estimating joint roughness coefficients. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 16(5), 303–307. Oct. https://doi.org/10.1016/0148-9062(79)90241-9
  • Tutuncu, A. N., & Sharma, M. M. (1992). The influence of fluids on grain contact stiffness and frame moduli in sedimentary rocks. Geophysics, 57(12), 1571–1582. https://doi.org/10.1190/1.1443225
  • Verdon, J. P., Kendall, J.-M., Stork, A. L., Chadwick, R. A., White, D. J., & Bissell, R. C. (2013). Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proceedings of the National Academy of Sciences of the United States of America, 110(30), E2762–71. https://doi.org/10.1073/pnas.1302156110.
  • Voake, T., Nermoen, A., Ravnås, C., Korsnes, R. I., & Fabricius, I. L. (2019). Influence of temperature cycling and pore fluid on tensile strength of chalk. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 277–288. https://doi.org/10.1016/j.jrmge.2018.12.004
  • Wang, J. G., Ju, Y., Gao, F., & Liu, J. (2016). A simple approach for the estimation of CO2 penetration depth into a caprock layer. Journal of Rock Mechanics and Geotechnical Engineering, 8(1), 75–86. https://doi.org/10.1016/j.jrmge.2015.10.002
  • Zelilidis, A., Piper, D. J. W., & Kontopoulos, N. (2002). Mesohellenic basin, Greece. American Association of Petroleum Geologists Bulletin, 86(1), 161–182.
  • Zhang, X., Jiang, Q., Kulatilake, P. H. S. W., Xiong, F., Yao, C., & Tang, Z. (2019). Influence of asperity morphology on failure characteristics and shear strength properties of rock joints under direct shear tests. International Journal of Geomechanics, 19(2), 04018196. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001347
  • Zou, Y., Li, S., Ma, X., Zhang, S., Li, N., & Chen, M. (2018). Effects of CO2 –brine–rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs. Journal of Natural Gas Science and Engineering, 49, 157–168. https://doi.org/10.1016/j.jngse.2017.11.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.