163
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Durability of peat stabilized by RHA based geopolymer formed by adding pure alumina and bauxite powder

, &
Pages 3812-3833 | Received 10 Jan 2022, Accepted 29 Nov 2022, Published online: 05 Jan 2023

References

  • Aldaood, A., Bouasker, M., & Al-Mukhtar, M. (2014). Impact of wetting–drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils. Engineering Geology, 174, 11–21. https://doi.org/10.1016/j.enggeo.2014.03.002
  • Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete: A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679
  • Amulya, S., Ravi Shankar, A. U., & Praveen, M. (2020). Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag. International Journal of Pavement Engineering, 21(9), 1114–1121. https://doi.org/10.1080/10298436.2018.1521520
  • ASTM. (1997). Standard guide for evaluating effectiveness of admixtures for soil stabilization. ASTM D4609. West Conshohocken, PA: ASTM.
  • ASTM. (2013). Standard test method for laboratory determination of the fibre content of peat samples by dry mass. ASTM ID1997, West Conshohocken, PA: ASTM.
  • ASTM. (2014). Standard test methods for moisture, ash, and organic matter of peat and other organic soils. ASTM D2974, West Conshohocken, PA: ASTM.
  • ASTM. (2015). Standard test method for pH of peat materials. ASTM D2976, West Conshohocken, PA: ASTM.
  • ASTM. (2012). Standard test methods for laboratory Com_Paction characteristics of soil using standard effort, ASTM D698, West Conshohocken, PA: ASTM.
  • Badv, K., & Sayadian, T. (2012). An investigation into the geotechnical characteristics of Urmia peat. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 36, 167.
  • BIS. (1980). Method of test for soils: Determination of specific gravity of fine grained soils. IS 2720 Part 3.
  • BIS. (1973). Methods of test for soils: Determination of water content. IS 2720 Part2 2720.
  • BIS. (1975). Method of test for soils: Determination of dry density of soils in-place by the core-cutter method. IS 2720 Part 29.
  • BIS. (1985). Method of test for soils: Determination of Atterberg limits. IS 2720 Part 5.
  • BIS. (1991). Method of test for soils: Laboratory determination of unconfined compressive strength, IS2720 Part 10.
  • Brew, D. R. M., & MacKenzie, K. J. D. (2007). Geopolymer synthesis using silica fume and sodium aluminate. Journal of Materials Science, 42(11), 3990–3993. https://doi.org/10.1007/s10853-006-0376-1
  • Davidson, L. K., Demirel, T., & Handy, R. L. (1965). Soil pulveration and lime migration in soil-lime stabilization. Highway Research Records, 92, 103–126.
  • Detphan, S., & Chindaprasirt, P. (2009). Preparation of fly ash and rice husk ash geopolymer. International Journal of Minerals, Metallurgy, and Materials, 16, 720–726.
  • Du, Y.-J., Bo, Y.-L., Jin, F., & Liu, C.-Y. (2016). Durability of reactive magnesia-activated slag-stabilized low plasticity clay subjected to drying–wetting cycle. European Journal of Environmental and Civil Engineering, 20(2), 215–230. https://doi.org/10.1080/19648189.2015.1030088
  • Du, Y.-J., Jiang, N.-J., Shen, S.-L., & Jin, F. (2012). Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay. Journal of Hazardous Materials, 225–226, 195–201. https://doi.org/10.1016/j.jhazmat.2012.04.072
  • Duraisamy, Y., Huat, B. B. K., & Aziz, A. A. (2007). Engineering properties and compressibility behaviour of tropical peat soil. American Journal of Applied Sciences, 4(10), 768–773. https://doi.org/10.3844/ajassp.2007.768.773
  • Du, Y.-J., Wei, M.-L., Reddy, K. R., Liu, Z.-P., & Jin, F. (2014). Effect of acid rain pH on leaching behaviour of cement stabilized lead-contaminated soil. Journal of Hazardous Materials, 271, 131–140. https://doi.org/10.1016/j.jhazmat.2014.02.002
  • Duxson, P., Lukey, G. C., Separovic, F., & Van Deventer, J. S. J. (2005). Effect of alkali cations on aluminum incorporation in geopolymeric gels. Industrial & Engineering Chemistry Research, 44(4), 832–839. https://doi.org/10.1021/ie0494216
  • Edil, T. B. (2003). Recent advances in geotechnical characterization and construction over peats and organic soils [Paper presentation]. In: Proceedings of the 2nd International Conference in Soft Soil Engineering and Technology, Putrajaya, Malaysia.
  • Fapohunda, C., Akinbile, B., & Shittu, A. (2017). Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement–A review. International Journal of Sustainable Built Environment, 6(2), 675–692. https://doi.org/10.1016/j.ijsbe.2017.07.004
  • Garcia-Lodeiro, I., Fernández-Jimenez, A., Pena, P., & Palomo, A. (2014). Alkaline activation of synthetic aluminosilicate glass. Ceramics International, 40(4), 5547–5558. https://doi.org/10.1016/j.ceramint.2013.10.146
  • Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207
  • Glukhovsky, V. D. (1994). Ancient, modern and future concretes [Paper presentation]. In: Proceedings of the First International Conference on Alkaline Cements and Concretes (pp. 1–9), Kiev, Ukraine.
  • Haha, M. B., Lothenbach, B., Le Saout, G. L., & Winnefeld, F. (2011). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO. Cement and Concrete Research, 41(9), 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37, 108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  • Hoy, M., Rachan, R., Horpibulsuk, S., Arulrajah, A., & Mirzababaei, M. (2017). Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement–Fly ash geopolymer. Construction and Building Materials, 144, 624–634. https://doi.org/10.1016/j.conbuildmat.2017.03.243
  • Huang, P.-T., Patel, M., Santagata, M. C., & Bobet, A. (2009). Classification of organic soils.
  • Jafer, H. M., Atherton, W., Sadique, M., Ruddock, F., & Loffill, E. (2018). Development of a new ternary blended cementitious binder produced from waste materials for use in soft soil stabilisation. Journal of Cleaner Production, 172, 516–528. https://doi.org/10.1016/j.jclepro.2017.10.233
  • Jiang, N.-J., Du, Y.-J., & Liu, K. (2018). Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack. Applied Clay Science, 161, 70–75. https://doi.org/10.1016/j.clay.2018.04.014
  • Jin, F., Gu, K., & Al-Tabbaa, A. (2014). Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Construction and Building Materials, 51, 395–404. https://doi.org/10.1016/j.conbuildmat.2013.10.081
  • Jittin, V., Bahurudeen, A., & Ajinkya, S. D. (2020). Utilisation of rice husk ash for cleaner production of different construction products. Journal of Cleaner Production, 263, 121578. https://doi.org/10.1016/j.jclepro.2020.121578
  • Jongpradist, P., Homtragoon, W., Sukkarak, R., Kongkitkul, W., & Jamsawang, P. (2018). Efficiency of rice husk ash as cementitious material in high-strength cement-admixed clay. Advances in Civil Engineering, 2018, 1–11. https://doi.org/10.1155/2018/8346319
  • Jun, Y., Han, S. H., & Kim, J. H. (2021). Early-age strength of CO2 cured alkali-activated blast furnace slag pastes. Construction and Building Materials, 288, 123075. https://doi.org/10.1016/j.conbuildmat.2021.123075
  • Kalantari, B., & Huat, B. B. K. (2009). Precast stabilized peat columns to reinforce peat soil deposits. Electronic Journal of Geotechnical Engineering, 14, 1–15.
  • Kamon, M., Nontananandh, S., & Katsumi, T. (1993). Utilization of stainless-steel slag by cement hardening. Soils and Foundations, 33(3), 118–129. https://doi.org/10.3208/sandf1972.33.3_118
  • Khanday, S. A., Hussain, M., & Das, A. K. (2021a). Stabilization of Indian peat using alkali-activated ground granulated blast furnace slag. Bulletin of Engineering Geology and the Environment, 80(7), 5539–5551. https://doi.org/10.1007/s10064-021-02248-9
  • Khanday, S. A., Hussain, M., & Das, A. K. (2021b). A review on chemical stabilization of peat. Geotechnical and Geological Engineering, 39(8), 5429–5443. https://doi.org/10.1007/s10706-021-01857-1
  • Khanday, S. A., Hussain, M., & Das, A. K. (2021c). Rice husk ash–based geopolymer stabilization of indian peat: Experimental investigation. Journal of Materials in Civil Engineering, 33(12), 4021347. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003982
  • Kolay, P. K., Aminur, M. R., Taib, S. N. L., & Zain, M. (2011). Stabilization of tropical peat soil from Sarawak with different stabilizing agents. Geotechnical and Geological Engineering, 29(6), 1135–1141. https://doi.org/10.1007/s10706-011-9441-x
  • Lemougna, P. N., Wang, K., Tang, Q., Melo, U. C., & Cui, X. (2016). Recent developments on inorganic polymers synthesis and applications. Ceramics International, 42(14), 15142–15159. https://doi.org/10.1016/j.ceramint.2016.07.027
  • Lo, F.-C., Lee, M.-G., & Lo, S.-L. (2021). Effect of coal ash and rice husk ash partial replacement in ordinary Portland cement on pervious concrete. Construction and Building Materials, 286, 122947. https://doi.org/10.1016/j.conbuildmat.2021.122947
  • Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z., & Siddique, R. (2022). Clayey soil stabilization using alkali-activated volcanic ash and slag. Journal of Rock Mechanics and Geotechnical Engineering, 14(2), 576–591. https://doi.org/10.1016/j.jrmge.2021.08.012
  • Nazari, A., Riahi, S., Riahi, S., Shamekhi, S. F., & Khademno, A. (2010). Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. Journal of American Science, 6, 6–9.
  • Palomo, A., Fernández-Jimenez, A., & Kovalchuck, G. (2005). Some key factors affecting the alkali activation of fly ash. In 2nd International Symposium of Non‑Traditional Cement and Concrete.
  • Panagiotopoulou, C., Tsivilis, S., & Kakali, G. (2015). Application of the Taguchi approach for the composition optimization of alkali activated fly ash binders. Construction and Building Materials. 91, 17–22. https://doi.org/10.1016/j.conbuildmat.2015.05.005
  • Paul, A., & Hussain, M. (2020a). Sustainable use of GGBS and RHA as a partial replacement of cement in the stabilization of Indian peat. International Journal of Geosynthetics and Ground Engineering, 6, 1–15.
  • Paul, A., & Hussain, M. (2020b). Cement stabilization of Indian peat: An experimental investigation. Journal of Materials in Civil Engineering, 32(11), 4020350. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003363
  • Paul, A., Hussain, M., & Ramu, B. (2021). The physicochemical properties and microstructural characteristics of peat and their correlations: Reappraisal. International Journal of Geotechnical Engineering, 15(6), 692–703. https://doi.org/10.1080/19386362.2018.1483099
  • Quispe, I., Navia, R., & Kahhat, R. (2019). Life Cycle Assessment of rice husk as an energy source. A Peruvian case study. Journal of Cleaner Production, 209, 1235–1244. https://doi.org/10.1016/j.jclepro.2018.10.312
  • Rahgozar, M. A., & Saberian, M. (2015). Physical and chemical properties of two Iranian peat types. Mires and Peat, 16, 1–17.
  • Saberian, M., & Rahgozar, M. A. (2016). Geotechnical properties of peat soil stabilised with shredded waste tyre chips in combination with gypsum, lime or cement. Mires and Peat, 18, 1–16.
  • Said, I., Khan, B., Inderyas, O., Rahman, M. A., & Ahmed, S. (2017). Utilization of rice husk ash as a pozzolan in self-compacting concrete. International Journal of Civil Engineering, 8, 98–108.
  • Samson, G., Cyr, M., & Gao, X. X. (2017). Formulation and characterization of blended alkali-activated materials based on flash-calcined metakaolin, fly ash and GGBS. Construction and Building Materials, 144, 50–64. https://doi.org/10.1016/j.conbuildmat.2017.03.160
  • Shen, S.-L., Han, J., & Du, Y.-J. (2008). Deep mixing induced property changes in surrounding sensitive marine clays. Journal of Geotechnical and Geoenvironmental Engineering, 134(6), 845–854. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(845)
  • Sing, W. L., Hashim, R., & Ali, F. H. (2008). Behavior of stabilized peat soils in unconfined compression tests. American Journal of Engineering and Applied Sciences, 1(4), 274–279. https://doi.org/10.3844/ajeassp.2008.274.279
  • Singhi, B., Laskar, A. I., & Ahmed, M. A. (2016). Investigation on soil–geopolymer with slag, fly ash and their blending. Arabian Journal for Science and Engineering, 41(2), 393–400. https://doi.org/10.1007/s13369-015-1677-y
  • Singhi, B., Laskar, A. I., & Ahmed, M. A. (2017). Mechanical behavior and sulfate resistance of alkali activated stabilized clayey soil. Geotechnical and Geological Engineering, 35(5), 1907–1920. https://doi.org/10.1007/s10706-017-0216-x
  • Sukkarak, R., Thangjaroensuk, B., Kongkitkul, W., & Jongpradist, P. (2021). Strength and equivalent modulus of cement stabilized lateritic with partial replacement by fly ash and rice husk ash. Engineering Journal, 25(10), 13–25. https://doi.org/10.4186/ej.2021.25.10.13
  • Tayeh, B. A., Zeyad, A. M., Agwa, I. S., & Amin, M. (2021). Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673
  • Tchakouté, H. K., & Rüscher, C. H. (2017). Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. Applied Clay Science, 140, 81–87. https://doi.org/10.1016/j.clay.2017.02.002
  • Thomas, A., Tripathi, R. K., & Yadu, L. K. (2018). A laboratory investigation of soil stabilization using enzyme and alkali-activated ground granulated blast-furnace slag. Arabian Journal for Science and Engineering, 43(10), 5193–5202. https://doi.org/10.1007/s13369-017-3033-x
  • Vavouraki, A. I. (2020). Utilization of industrial waste slags to enhance ground waste concrete-based inorganic polymers. Journal of Sustainable Metallurgy, 6(3), 383–399. https://doi.org/10.1007/s40831-020-00281-8
  • Vijaya, S. K., Jagadeeswari, K., & Srinivas, K. (2021). Behaviour of M60 grade concrete by partial replacement of cement with fly ash, rice husk ash and silica fume. Materials Today: Proceedings, 37, 2104–2108. https://doi.org/10.1016/j.matpr.2020.07.523
  • von Post, L. (1922). Sveriges Geologiska Undersöknings torvinventering och några av dess hittills vunna resultat. Sven_ska mosskulturföreningen, 1–27.
  • Ye, H., & Huang, L. (2020). Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability. Construction and Building Materials, 246, 118477. https://doi.org/10.1016/j.conbuildmat.2020.118477
  • Zabihi, S. M., Tavakoli, H., & Mohseni, E. (2018). Engineering and microstructural properties of fiber-reinforced rice husk–ash based geopolymer concrete. Journal of Materials in Civil Engineering, 30(8), 4018183. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002379
  • Zeng, X., Li, Y., Ran, Y., Yang, K., Qu, F., & Wang, P. (2018). Deterioration mechanism of CA mortar due to simulated acid rain. Construction and Building Materials, 168, 1008–1015. https://doi.org/10.1016/j.conbuildmat.2018.03.033
  • Zheng, K. (2016). Pozzolanic reaction of glass powder and its role in controlling alkali–silica reaction. Cement and Concrete Composites, 67, 30–38. https://doi.org/10.1016/j.cemconcomp.2015.12.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.