117
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The fracture energy and mechanical properties of high-strength concrete containing polyolefin macro-fibres

, &
Pages 3834-3848 | Received 17 Aug 2022, Accepted 19 Dec 2022, Published online: 30 Dec 2022

References

  • Abdelsamie, K., Agwa, I. S., Tayeh, B. A., & Hafez, R. D. A. (2021). Improving the brittle behaviour of high-strength concrete using keratin and glass fibres. Advances in Concrete Construction, 12(6), 469–477. ‏ https://doi.org/10.12989/acc.2021.12.6.469
  • ACI 222R-01 (2001). Protection of metals in concrete against corrosion. American Concrete Institute.
  • ACI Committee 544. (2008). Guide for specifying, proportioning, and production of fiber-reinforced concrete. American Concrete Institute.
  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Afzali-Naniz, O., & Mazloom, M. (2018). Effects of colloidal nano-silica on fresh and hardened properties of selfcompacting lightweight concrete. Journal of Building Engineering, 20, 400–410. https://doi.org/10.1016/j.jobe.2018.08.014
  • Afzali-Naniz, O., & Mazloom, M. (2019a). Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica. Advances in Structural Engineering, 22(10), 2264–2277. https://doi.org/10.1177/1369433219837426
  • Afzali-Naniz, O., Mazloom, M., & Karamloo, M. (2021). Effect of nano and micro SiO2 on brittleness and fracture parameters of self-compacting lightweight concrete. Construction and Building Materials, 299, 124354. https://doi.org/10.1016/j.conbuildmat.2021.124354
  • Alberti, M. G., Enfedaque, A., Gálvez, J. C., & Álvarez, C. (2019). Using polyolefin fibers with moderate-strength concrete matrix to improve ductility. Journal of Materials in Civil Engineering, 31(9), 4019170. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002775
  • Alberti, M., Enfedaque, A., Gálvez, J., & Picazo, A. (2020). Recent advances in structural fibre-reinforced concrete focused on polyolefin-based macro-synthetic fibres. Materiales de Construcción, 70(337), 206. https://doi.org/10.3989/mc.2020.12418
  • Alyhya, W. S., Dhaheer, M. A., Al-Rubaye, M. M., & Karihaloo, B. (2016). Influence of mix composition and strength on the fracture properties of self-compacting concrete. Construction and Building Materials, 110, 312–322. https://doi.org/10.1016/j.conbuildmat.2016.02.037
  • Amin, M., Hakeem, I. Y., Zeyad, A. M., Tayeh, B. A., Maglad, A. M., & Agwa, I. S. (2022). Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperatures. Case Studies in Construction Materials, 16, e01063. ‏ https://doi.org/10.1016/j.cscm.2022.e01063
  • Arisoy, B., & Wu, H.-C. (2008). Material characteristics of high performance lightweight concrete reinforced with PVA. Construction and Building Materials, 22(4), 635–645. https://doi.org/10.1016/j.conbuildmat.2006.10.010
  • ASTM C 78. (2002). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA. 19428-2959, United States.
  • ASTM C1585. (2013). Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. ASTM International.
  • ASTM C1609/C1609M-12. (2012). Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). ASTM International.
  • ASTM C494/C494M-17. (2020). Standard specification for chemical admixtures for concrete. ASTM International.
  • ASTM C597. (2002). Standard test method for pulse velocity through concrete. ASTM International.
  • Brooks, J. J., Johari, M. M., & Mazloom, M. (2000). Effect of admixtures on the setting times of high- strength concrete. Cement and Concrete Composites, 22(4), 293–301. https://doi.org/10.1016/S0958-9465(00)00025-1
  • BS 1881. (1983). Testing concrete-Part 116: Method for determination of compressive strength of concrete cubes. BS, 116, 36.
  • Chen, B., & Liu, J. (2005). Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cement and Concrete Research, 35(5), 913–917. ‏ https://doi.org/10.1016/j.cemconres.2004.07.035
  • Doostmohamadi, A., Karamloo, M., & Afzali-Naniz, O. (2020). Effect of polyolefin macro fibers and handmade GFRP anchorage system on improving the bonding behavior of GFRP bars embedded in self-compacting lightweight concrete. Construction and Building Materials, 253, 119230. https://doi.org/10.1016/j.conbuildmat.2020.119230
  • Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187. https://doi.org/10.1016/j.conbuildmat.2016.11.100
  • Ghasemi, M., Ghasemi, M. R., & Mousavi, S. R. (2019). Studying the fracture parameters and size effect of steel fiber-reinforced self-compacting concrete. Construction and Building Materials, 201, 447–460. ‏ https://doi.org/10.1016/j.conbuildmat.2018.12.172
  • Hakeem, I. Y., Amin, M., Abdelsalam, B. A., Tayeh, B. A., Althoey, F., & Agwa, I. S. (2022). Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete. Structural Engineering and Mechanics, 82(3), 295–312. ‏ https://doi.org/10.12989/sem.2022.82.3.295
  • Hillerborg, A. (1985). The theoretical basis of a method to determine the fracture energy G F of concrete. Materials and Structures, 18(4), 291–296. https://doi.org/10.1007/BF02472919
  • Hossain, K. M. A., Lachemi, M., Sammour, M., & Sonebi, M. (2012). Influence of polyvinyl alcohol, steel, and hybrid fibers on fresh and rheological properties of self-consolidating concrete. Journal of Materials in Civil Engineering, 24(9), 1211–1220. ‏ https://doi.org/10.1061/(ASCE)MT.1943-5533.0000490
  • IS 13311-1. (1992). Method of Non-destructive testing of concrete, Part 1: Ultrasonic pulse velocity. Bureau of Indian Standards.
  • Jang, S.-J., & Yun, H.-D. (2018). Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Composite Structures, 185, 203–211. https://doi.org/10.1016/j.compstruct.2017.11.009
  • Jaradat, O. Z., Gadri, K., Tayeh, B. A., & Guettalaa, A. (2021). Influence of sisal fibres and rubber latex on the engineering properties of sand concrete. Structural Engineering and Mechanics, 80(1), 47–62. ‏ https://doi.org/10.12989/sem.2021.80.1.047
  • Karamloo, M., Afzali-Naniz, O., & Doostmohamadi, A. (2020). Impact of using different amounts of polyolefin macro fibers on fracture behavior, size effect, and mechanical properties of self-compacting lightweight concrete. Construction and Building Materials, 250, 118856. https://doi.org/10.1016/j.conbuildmat.2020.118856
  • Khademi, F., Akbari, M., & Jamal, S. M. (2015). Measuring compressive strength of puzzolan concrete by ultrasonic pulse velocity method. i-Manager’s Journal on Civil Engineering, 5(3), 23–30. https://doi.org/10.26634/jce.5.3.3427
  • Kuder, K. G., & Shah, S. P. (2010). Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 24(2), 181–186. https://doi.org/10.1016/j.conbuildmat.2007.06.018
  • Majeed, S. S., Haido, J. H., Atrushi, D. S., Al-Kamaki, Y., Dinkha, Y. Z., Saadullah, S. T., & Tayeh, B. A. (2021). Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis. Computers and Concrete, 28(5), 451–463. ‏ https://doi.org/10.12989/cac.2021.28.5.451
  • Mazloom, M., Karimpanah, H., & Karamloo, M. (2020). Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures. Advances in Concrete Construction, 9(4), 375–386. https://doi.org/10.12989/acc.2020.9.4.375
  • Mazloom, M., & Lotfi Ahangar Kolaee, S. (2021). Evaluating the influence of temperature and fiber type on the mechanical properties of self-compacting lightweight concrete. Amirkabir Journal of Civil Engineering, 53(9), 22–22. https://doi.org/10.22060/CEEJ.2020.18185.6794.
  • Mazloom, M., & Mirzamohammadi, S. (2019). Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers. Advances in Materials Research: AMR, 8(2), 137–154. https://doi.org/10.12989/amr.2019.8.2.137
  • Mazloom, M., Pourhaji, P., & Afzali-Naniz, O. (2021). Effects of halloysite nanotube, nano-silica and micro-silica on rheology, hardened properties and fracture energy of SCLC. Structural Engineering and Mechanics, 80(1), 91–101. https://doi.org/10.12989/sem.2021.80.1.091
  • Nili, M., & Afroughsabet, V. (2010). Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. International Journal of Impact Engineering, 37(8), 879–886. https://doi.org/10.1016/j.ijimpeng.2010.03.004
  • Qiu, J., Zheng, J., Guan, X., Pan, D., & Zhang, C. (2017). Capillary water absorption properties of steel fiber reinforced coal gangue concrete under freeze-thaw cycles. Korean Journal of Materials Research, 27(8), 451–458. ‏ https://doi.org/10.3740/MRSK.2017.27.8.451
  • Rashiddadash, P., Ramezanianpour, A. A., & Mahdikhani, M. (2014). Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Construction and Building Materials, 51, 313–320. https://doi.org/10.1016/j.conbuildmat.2013.10.087
  • Sadrinejad, I., Madandoust, R., & Ranjbar, M. M. (2018). The mechanical and durability properties of concrete containing hybrid synthetic fibers. Construction and Building Materials, 178, 72–82. https://doi.org/10.1016/j.conbuildmat.2018.05.145
  • Salehi, H., & Mazloom, M. (2019). An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water. Archives of Civil and Mechanical Engineering, 19(3), 803–819. https://doi.org/10.1016/j.acme.2018.10.008
  • Shen, D., Feng, Z., Kang, J., Wen, C., & Shi, H. (2020). Effect of Barchip fiber on stress relaxation and cracking potential of concrete internally cured with super absorbent polymers. Construction and Building Materials, 249, 118392. https://doi.org/10.1016/j.conbuildmat.2020.118392
  • Shen, D., Wen, C., Zhu, P., Wu, Y., & Yuan, J. (2020). Influence of Barchip fiber on early-age autogenous shrinkage of high strength concrete. Construction and Building Materials, 256, 119223. https://doi.org/10.1016/j.conbuildmat.2020.119983
  • Smarzewski, P. (2019). Influence of basalt-polypropylene fibres on fracture properties of high performance concrete. Composite Structures, 209, 23–33. https://doi.org/10.1016/j.compstruct.2018.10.070
  • Soroushian, P., & Bayasi, Z. (1991). Fiber type effects on the performance of steel fiber reinforced concrete. Materials Journal, 88(2), 129–134.
  • Tabatabaeian, M., Khaloo, A., Joshaghani, A., & Hajibandeh, E. (2017). Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC. Construction and Building Materials, 147, 497–509. https://doi.org/10.1016/j.conbuildmat.2017.04.181
  • Tarighat, A., & Naniz, O. A. (2017). Evaluation of mechanical properties and durability indices of concrete containing wollastonite and silica-fume. Journal of Civil and Environmental Engineering, 47(86), 47–57.
  • Tayeh, B. A., Yousif, S. T., Abu Bakar, B. H., Al-Tayeb, M. M., Abdul-Razzak, A. A., & Haido, J. H. (2021). Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios. Advances in Concrete Construction, 11(2), 89–98. https://doi.org/10.12989/acc.2021.11.2.089
  • Wang, S., Zhu, H., Liu, F., Cheng, S., Wang, B., & Yang, L. (2022). Effects of steel fibers and concrete strength on flexural toughness of ultra-high performance concrete with coarse aggregate. Case Studies in Construction Materials, 17, e01170. ‏ https://doi.org/10.1016/j.cscm.2022.e01170
  • Yan, H., Sun, W., & Chen, H. (1999). The effect of silica fume and steel fiber on the dynamic mechanicalperformance of high-strength concrete. Cement and Concrete Research, 29(3), 423–426. https://doi.org/10.1016/S0008-8846(98)00235-X
  • Yew, M. K., Mahmud, H. B., Ang, B. C., & Yew, M. C. (2015). Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete. Construction and Building Materials, 90, 36–43. https://doi.org/10.1016/j.conbuildmat.2015.04.024
  • Yildizel, S. A., Tayeh, B. A., & Calis, G. (2020). Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and Extreme Vertices Design Techniques. Journal of Materials Research and Technology, 9(2), 2093–2106. ‏ https://doi.org/10.1016/j.jmrt.2020.02.083
  • Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. https://doi.org/10.1016/j.conbuildmat.2015.05.105
  • Zhang, Y., Zhang, W., She, W., Ma, L., & Zhu, W. (2012). Ultrasound monitoring of setting and hardening process of ultra-high performance cementitious materials. NDT & E International, 47, 177–184. https://doi.org/10.1016/j.ndteint.2009.10.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.