170
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Bio-remediation of cracks – a novel technique to self-heal cracks in the concrete

Pages 4086-4100 | Received 14 Mar 2022, Accepted 13 Jan 2023, Published online: 01 Feb 2023

References

  • Achal, V., Abhijit, M., & Sudhakara Reddy, M. (2011). Microbial concrete: Way to enhance the durability of building structures. Journal of Materials in Civil Engineering, 23(6), 730–734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000159
  • Berkowitz, B., Singurindy, O., & Lowell, R. P. (2003). Calcium carbonate precipitation/dissolution in salt water - fresh water mixing zones. American Geophysical Union, 30, 57–61. https://doi.org/10.1029/2002GL016208
  • De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial Carbonate Precipitation in Construction materials: A review. Ecological Engineering, 36(2), 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  • Eštokov, A., Harbuľáková, V. O., Luptáková, A., & Števulová, N. (2012). Study of the deterioration of concrete influenced by biogenic sulphate attack. Procedia Engineering, 42, 1731–1738. https://doi.org/10.1016/j.proeng.2012.07.566
  • Fischer, S. S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  • Ghosh, P., Mandal, S., Bandyopadhyaya, G., & Chattopadhyay, B. B. (2006). Development of bio concrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian Journal of Experimental Biology, 44, 336–339.
  • Jagannathan, P., Sathya Narayanan, K. S., Kantha Devi, A., & Sathesh Kumar, A. (2018). Studies on mechanical properties of bacterial concrete with two bacterial species. Materials Today: Proceedings, 5, 8875–8879.https://doi.org/10.1016/j.matpr.2017.12.320
  • Jena, S., Basa, B., Chandra Panda, K., & Sahoo, N. K. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651–656.https://doi.org/10.1016/j.matpr.2020.03.129
  • Jerga, J. (2004). Physico-mechanical properties of carbonated concrete. Construction and Building Materials, 18(9), 645–652. https://doi.org/10.1016/j.conbuildmat.2004.04.029
  • Kalhori, H., & Bagherpour, R. (2017). Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Construction and Building Materials, 148, 249–260. https://doi.org/10.1016/j.conbuildmat.2017.05.074
  • Krishnapriya, S., Venkatesh Babu, D. L., & Prince Arulraj, G. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological research, 174, 48–55. https://doi.org/10.1016/j.micres.2015.03.009
  • Luo, J., Xi, C., Crump, J., Zhou, H., Davies, G. D., Zhou, G., Zhang, N., & Congrui, J. (2018). Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction and Building Materials, 164, 275–285. https://doi.org/10.1016/j.conbuildmat.2017.12.233
  • Mondal, S., & Aparna, G. (2018). Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Construction and Building Materials, 183, 202–214. https://doi.org/10.1016/j.conbuildmat.2018.06.176
  • Mondala, S., Das, P., & Arun Kumar, C. (2017). Application of bacteria in concrete. Materials Today, 1, 9833–9836.https://doi.org/10.1016/j.matpr.2017.06.276
  • Nafise, H. B., Mostofinejad, D., & Eftekhar, M. (2017). Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials, 145, 107–116.https://doi.org/10.1016/j.conbuildmat.2017.04.003
  • Nain, N., Surabhi, R., Yathish, N. V., Krishnamurthy, V., Deepa, T., & Tharannum, S. (2019). Enhancement in strength parameters of concrete by application of bacillus bacteria. Construction and Building Materials, 202, 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059
  • Nemati, M., & Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, 33(5), 635–642. https://doi.org/10.1016/S0141-0229(03)00191-1
  • Ngala, V. T., & Page, C. L. (1997). Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cement and Concrete Research, 27(7), 995–1007. https://doi.org/10.1016/S0008-8846(97)00102-6
  • Nguyen, H. T., Ghorbel, E., Fares, H., & Cousture, A. (2019). Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites, 104, 103340. https://doi.org/10.1016/j.cemconcomp.2019.103340
  • Okabe, S., Odagiri, M., Ito, T., & Satoh, H. (2007). Succession of sulphur-oxidizing bacteria in the microbial community on corroding concrete in sewer system. Applied and Environmental Microbiology, 73(3), 971–980. https://doi.org/10.1128/AEM.02054-06
  • Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., Van Der Zon, W., & Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026
  • Pachaivanan, P., Hariharasudhan, C., Mohanasundaram, M., & Anitha, M. (2020). Experimental analysis of self-healing properties of bacterial concrete. Materials Today: Proceedings, 33, 1–7.https://doi.org/10.1016/j.matpr.2020.03.782
  • Pei, R., Liu, J., Wang, S., & Yang, M. (2013). Use of bacterial cell walls to improve the mechanical performance of concrete. Cement and Concrete Composites, 39, 122–130. https://doi.org/10.1016/j.cemconcomp.2013.03.024
  • Prascal, J., Jain, D. K., & Ahuja, A. K. (2006). Factors Influencing the Sulphate Resistance of Cement, Concrete and Mortar. Asian Journal of Civil Engineering (Building and Housing), 7, 259–268.
  • Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using microorganisms. ACI Materials Journal, 98, 3–9.https://doi.org/10.14359/10154.
  • Ramakrishnan, V., Bang, S. S., & Deo, K. S. (1998). A novel technique for repairing cracks in high performance concrete using bacteria [Paper presentation]. Proceedings of International Conference on High Performance High Strength Concrete (pp. 597–618). Perth, Australia.
  • Reddy, M. S., & Revathi, D. (2019). An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials Today: Proceedings, 19, 803–809.https://doi.org/10.1016/j.matpr.2019.08.135
  • Sato, T., & Diallo, F. (2010). Seeding effect of Nano-CaCO3 on the hydration of tri calcium silicate. Transportation Research Record: Journal of the Transportation Research Board, 2141(1), 61–67. https://doi.org/10.3141/2141-11
  • Sisomphon, K., & Copuroglu, O. (2010). Some Characteristics of a self-healing mortar incorporating calcium sulfoaluminate based agent [Paper presentation]. Proceedings of 2nd International Conference on Durability of Concrete Structures (pp. 543–557). Sapparo, Japan.
  • Song, H. W., & Kwon, S. J. (2007). Permeability characteristics of carbonated concrete considering capillary pore structure. Cement and Concrete Research, 37(6), 909–915. https://doi.org/10.1016/j.cemconres.2007.03.011
  • Tittelboom, K., D., Belie, N., D., Muynck, W., & Verstraete, W. (2010). Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40(1), 157–166. https://doi.org/10.1016/j.cemconres.2009.08.025
  • Vijay, K., & Meena, M. (2020). Experimental study on bacterial concrete using Bacillus Subtilis micro-organism. Lecture Notes in Civil Engineering, 61, 245–252.https://doi.org/10.1007/978-981-15-1404-3_20
  • Wu, M., Johannesson, B., & Geiker, M. (2012). A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 28(1), 571–583. https://doi.org/10.1016/j.conbuildmat.2011.08.086
  • Xiao, J. H., Li, J., Zhu, B. L., & Fan, Z. Y. (2002). Experimental study on strength and ductility of carbonated concrete elements. Construction and Building Materials, 16(3), 187–192. https://doi.org/10.1016/S0950-0618(01)00034-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.