101
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the effect of curing and high temperature on the strength of copolymer added geopolymer mortars

ORCID Icon
Pages 4165-4180 | Received 14 Oct 2022, Accepted 02 Feb 2023, Published online: 31 Mar 2023

References

  • Agwa, I. S., Zeyad, A. M., Tayeh, B. A., & Amin, M. (2022). Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete. Journal of Building Engineering, 56(June), 104773. https://doi.org/10.1016/j.jobe.2022.104773
  • Ahmad, M. R., Chen, B., & Shah, S. F. A. (2020). Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Construction and Building Materials, 265, 120320. https://doi.org/10.1016/j.conbuildmat.2020.120320
  • Amin, M., Hakeem, I. Y., Zeyad, A. M., Tayeh, B. A., Maglad, A. M., & Agwa, I. S. (2022). Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperatures. Case Studies in Construction Materials, 16(April), e01063. https://doi.org/10.1016/j.cscm.2022.e01063
  • Amin, M., Tayeh, B. A., & Agwa, I. S. (2020). Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete. Journal of Cleaner Production, 273 https://doi.org/10.1016/j.jclepro.2020.123073
  • Amin, M., Tayeh, B. A., Agwa., & I., Saad. (2020). Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures. Case Studies in Construction Materials, 13 https://doi.org/10.1016/j.cscm.2020.e00459
  • Amin, M., Tayeh, B. A., Kandil, M. A., Agwa, I. S., & Abdelmagied, M. F. (2022). Effect of rice straw ash and palm leaf ash on the properties of ultrahigh-performance concrete. Case Studies in Construction Materials, 17(June), e01266. https://doi.org/10.1016/j.cscm.2022.e01266
  • Amin, M., Zeyad, A. M., Tayeh, B. A., & Saad Agwa, I. (2021). Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates. Construction and Building Materials, 302 https://doi.org/10.1016/j.conbuildmat.2021.124196
  • Amizah Wan Jusoh, W., Syahrizal Ibrahim, I., & Rahman Mohd Sam, A. (2017). Flexural behaviour of reinforced concrete beams with discrete steel – polypropylene fibres. MATEC Web of Conferences, 101, 01020. https://doi.org/10.1051/matecconf/201710101020
  • Asadi, I., Baghban, M. H., Hashemi, M., Izadyar, N., & Sajadi, B. (2022). Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: A review. Case Studies in Construction Materials, 17(April), e01162. https://doi.org/10.1016/j.cscm.2022.e01162
  • ASTM C230 (2010). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement 1. Annual Book of ASTM Standards.
  • Atmaca, A., & Kanoglu, M. (2012). Reducing energy consumption of a raw mill in cement industry. Energy, 42(1), 261–269. https://doi.org/10.1016/j.energy.2012.03.060
  • Bao, X., Yang, H., Xu, X., Xu, T., Cui, H., Tang, W., Sang, G., & Fung, W. H. (2020). Development of a stable inorganic phase change material for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, 208, 110420. https://doi.org/10.1016/j.solmat.2020.110420
  • Bi, L., Long, G., Xiao, R., Zeng, X., & Xie, Y. (2021). Properties and characterization of high-performance steam-cured cement-based materials modified by phase change materials. Journal of Cleaner Production, 328, 129669. https://doi.org/10.1016/j.jclepro.2021.129669
  • Cao, V. D., Pilehvar, S., Salas-Bringas, C., Szczotok, A. M., Rodriguez, J. F., Carmona, M., Al-Manasir, N., & Kjøniksen, A. L. (2017). Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Conversion and Management, 133, 56–66 https://doi.org/10.1016/j.enconman.2016.11.061
  • Cheng, F., Wen, R., Zhang, X., Huang, Z., Huang, Y., Fang, M., Liu, Y., Wu, X., & Min, X. (2018). Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage. Composites Part A: Applied Science and Manufacturing, 107, 180–188. https://doi.org/10.1016/j.compositesa.2017.12.022
  • Dawood, E. T., Mohammed, W. T., & Plank, J. (2022). Performance of sustainable mortar using calcined clay, fly ash, limestone powder and reinforced with hybrid fibers. Case Studies in Construction Materials, 16, e00849. https://doi.org/10.1016/j.cscm.2021.e00849
  • Frota de Albuquerque Landi, F., Fabiani, C., & Pisello, A. L. (2020). Palm oil for seasonal thermal energy storage applications in buildings: The potential of multiple melting ranges in blends of bio-based fatty acids. Journal of Energy Storage, 29, 101431. https://doi.org/10.1016/j.est.2020.101431
  • Gao, F., Ji, Y., Zhang, L., Zhang, Z., & Xue, Q. (2021). High temperature resistance of a phase change cementitious material at elevated temperatures. Construction and Building Materials, 292, 123456. https://doi.org/10.1016/j.conbuildmat.2021.123456
  • Gao, F., Zhang, L., Ji, Y., Gao, Y., Xue, Q., Zhang, Z., & Ma, M. M. (2021). Improvement effect of a phase change material on microstructure of cement-based materials at elevated temperatures. Structural Concrete, 23(4):2233–2245. https://doi.org/10.1002/suco.202100023
  • Gencel, O., Sarı, A., Kaplan, G., Ustaoglu, A., Hekimoğlu, G., Bayraktar, O. Y., & Ozbakkaloglu, T. (2022). Properties of eco-friendly foam concrete containing PCM impregnated rice husk ash for thermal management of buildings. Journal of Building Engineering, 58(April) https://doi.org/10.1016/j.jobe.2022.104961
  • Hakeem, I. Y., Agwa, I. S., Tayeh, B. A., & Abd-Elrahman, M. H. (2022). Effect of using a combination of rice husk and olive waste ashes on high-strength concrete properties. Case Studies in Construction Materials, 17(September), e01486. https://doi.org/10.1016/j.cscm.2022.e01486
  • Hakeem, I. Y., Amin, M., Zeyad, A. M., Tayeh, B. A., Maglad, A. M., & Agwa, I. S. (2022). Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties. Journal of Cleaner Production, 370(July), 133542. https://doi.org/10.1016/j.jclepro.2022.133542
  • Hamada, H. M., Skariah Thomas, B., Tayeh, B., Yahaya, F. M., Muthusamy, K., & Yang, J. (2020). Use of oil palm shell as an aggregate in cement concrete: A review. In Construction and Building Materials, 265 (). https://doi.org/10.1016/j.conbuildmat.2020.120357
  • Hossain, S. R., Ahmed, I., Azad, F. S., & Monjurul Hasan, A. S. M. (2020). Empirical investigation of energy management practices in cement industries of Bangladesh. Energy, 212 https://doi.org/10.1016/j.energy.2020.118741
  • Jamil, N. H., Abdullah, M. M. A. B., Pa, F. C., Hasmaliza, M., Ibrahim, W. M. A. W., Aziz, I. H. A., Jeż, B., & Nabiałek, M. (2021). Phase transformation of Kaolin-ground granulated blast furnace slag from geopolymerization to sintering process. Magnetochemistry, 7(3):32. https://doi.org/10.3390/magnetochemistry7030032
  • Jiang, F., Han, X., Wang, Y., Wang, P., Zhao, T., & Zhang, K. (2022). Effect of freeze-thaw cycles on tensile properties of CFRP, bond behavior of CFRP-concrete, and flexural performance of CFRP-strengthened concrete beams. Cold Regions Science and Technology, 194, 103461. https://doi.org/10.1016/j.coldregions.2021.103461
  • Kim, H. G., Qudoos, A., Jeon, I. K., Woo, B. H., & Ryou, J. S. (2020). Assessment of PCM/SiC-based composite aggregate in concrete: Energy storage performance. Construction and Building Materials, 258, 119637. https://doi.org/10.1016/j.conbuildmat.2020.119637
  • Kim, K. Y., Yun, T. S., & Park, K. P. (2013). Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography. Cement and Concrete Research, 50, 34–40. https://doi.org/10.1016/j.cemconres.2013.03.020
  • Kim, Y. U., Park, J. H., Yun, B. Y., Yang, S., Wi, S., & Kim, S. (2021). Mechanical and thermal properties of artificial stone finishing materials mixed with PCM impregnated lightweight aggregate and carbon material. Construction and Building Materials, 272 https://doi.org/10.1016/j.conbuildmat.2020.121882
  • Kodur, V. K. R. (2018). Innovative strategies for enhancing fire performance of high-strength concrete structures. 21(11), 1723–1732. https://doi.org/10.1177/1369433218754335
  • Kunchariyakun, K., Sinyoung, S., & Kajitvichyanukul, P. (2022). Comparative microstructures and mechanical properties of mortar incorporating wood fiber waste from various curing conditions. Case Studies in Construction Materials, 16. https://doi.org/10.1016/J.CSCM.2021.E00855
  • Li, Y., Tan, K. H., & Yang, E. H. (2019). Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cement and Concrete Composites, 96, 174–181. https://doi.org/10.1016/J.CEMCONCOMP.2018.11.009
  • Liu, L., Yang, G., He, J., Liu, H., Gong, J., Yang, H., Yang, W., & Joyklad, P. (2022). Impact of fibre factor and temperature on the mechanical properties of blended fibre-reinforced cementitious composite. Case Studies in Construction Materials, 16 e00773. https://doi.org/10.1016/J.CSCM.2021.E00773
  • Liu, Y., Xie, M., Gao, X., Yang, Y., & Sang, Y. (2018). Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage. Applied Thermal Engineering, 140, 112–119. https://doi.org/10.1016/J.APPLTHERMALENG.2018.05.042
  • Luga, E., & Atis, C. D. (2018). Optimization of heat cured fly ash/slag blend geopolymer mortars designed by “Combined Design” method: Part 1. Construction and Building Materials, 178, 393–404. https://doi.org/10.1016/J.CONBUILDMAT.2018.05.140
  • Mahmoodi, O., Siad, H., Lachemi, M., Dadsetan, S., & Sahmaran, M. (2021). Development and characterization of binary recycled ceramic tile and brick wastes-based geopolymers at ambient and high temperatures. Construction and Building Materials, 301, 124138. https://doi.org/10.1016/J.CONBUILDMAT.2021.124138
  • Malik, M., Bhattacharyya, S. K., & Barai, S. V. (2021). Thermal and mechanical properties of concrete and its constituents at elevated temperatures: A review. Construction and Building Materials, 270, 121398. https://doi.org/10.1016/J.CONBUILDMAT.2020.121398
  • Mijarsh, M. J. A., Megat Johari, M. A., Abu Bakar, B. H., Ahmad, Z. A., & Zeyad, A. M. (2021). Influence of SiO2, Al2O3, CaO, and Na2O on the elevated temperature performance of alkali-activated treated palm oil fuel ash-based mortar. Structural Concrete, 22(S1):380–399. https://doi.org/10.1002/suco.201900302
  • Mo, K. H., Yap, K. K. Q., Alengaram, U. J., & Jumaat, M. Z. (2014). The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete. Construction and Building Materials, 55, 20–28. https://doi.org/10.1016/J.CONBUILDMAT.2013.12.103
  • Mohamed, O. A. (2019). A review of durability and strength characteristics of alkali-activated slag concrete. In Materials, 12Issue(8):1198. https://doi.org/10.3390/ma12081198
  • Nasir, M., Johari, M. A. M., Maslehuddin, M., Yusuf, M. O., & Al-Harthi, M. A. (2020). Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar. Construction and Building Materials, 251, 118961. https://doi.org/10.1016/J.CONBUILDMAT.2020.118961
  • Pilehvar, S., Cao, V. D., Szczotok, A. M., Carmona, M., Valentini, L., Lanzón, M., Pamies, R., & Kjøniksen, A. L. (2018). Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials, 173, 28–39. https://doi.org/10.1016/j.conbuildmat.2018.04.016
  • Pilehvar, S., Cao, V. D., Szczotok, A. M., Valentini, L., Salvioni, D., Magistri, M., Pamies, R., & Kjøniksen, A. L. (2017). Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cement and Concrete Research, 100:341–349. https://doi.org/10.1016/j.cemconres.2017.07.012
  • Rashad, A. M. (2015). Potential Use of Silica Fume Coupled with Slag in HVFA Concrete Exposed to Elevated Temperatures. Journal of Materials in Civil Engineering, 27(11), 04015019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001274
  • Sahmaran, M., Lachemi, M., & Li, V. C. (2010). Assessing Mechanical Properties and Microstructure of Fire-Damaged Engineered Cementitious Composites. ACI Materials Journal, (107)3. 297–304. http://acemrl.engin.umich.edu/wp-content/uploads/sites/412/2018/10/Assessing-the-Mechanical-Properties-and-Microstructure-of-Fire-Damaged-Engineered-Cementitious-Composites.pdf
  • Shah, S. F. A., Chen, B., Oderji, S. Y., Haque, M. A., & Ahmad, M. R. (2020). Improvement of early strength of fly ash-slag based one-part alkali activated mortar. Construction and Building Materials, 246 https://doi.org/10.1016/j.conbuildmat.2020.118533
  • Sun, D., & Wang, L. (2015). Utilization of paraffin/expanded perlite materials to improve mechanical and thermal properties of cement mortar. Construction and Building Materials, 101, 791–796. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.123
  • Tayeh, B. A., Hakamy, A., Amin, M., Zeyad, A. M., & Agwa, I. S. (2022). Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature. Case Studies in Construction Materials, 16 https://doi.org/10.1016/j.cscm.2022.e00951
  • Tayeh, B. A., Zeyad, A. M., Agwa, I. S., & Amin, M. (2021). Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15 https://doi.org/10.1016/j.cscm.2021.e00673
  • Ulugöl, H., Kul, A., Yıldırım, G., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280, 124358. https://doi.org/10.1016/J.JCLEPRO.2020.124358
  • Wang, K., Shah, S. P., & Mishulovich, A. (2004). Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cement and Concrete Research, 34(2):299–309. https://doi.org/10.1016/j.cemconres.2003.08.003
  • Xiao, J., Xie, Q., & Xie, W. (2018). Study on high-performance concrete at high temperatures in China (2004–2016) - An updated overview. Fire Safety Journal, 95, 11–24. https://doi.org/10.1016/J.FIRESAF.2017.10.007
  • Ya-Min, G., Yong-Hao, F., Duo, Y., Yong-Fan, G., & Chen-Hui, Z. (2015). Properties and microstructure of alkali-activated slag cement cured at below- And about-normal temperature. Construction and Building Materials, 79:1–8. https://doi.org/10.1016/j.conbuildmat.2014.12.068
  • Yoo, D. H., Jeon, I. K., Woo, B. H., & Kim, H. G. (2021). Performance of energy storage system containing cement mortar and PCM/epoxy/SiC composite fine aggregate. Applied Thermal Engineering, 198, 117445. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117445
  • Yu, K., Huang, Y., Jin, B., & Liu, Y. (2021). (2021). Experimental Research on Thermomechanical Properties of Thermal Energy Storage Cement Mortar Incorporated with Phase-Change Material. Advances in Civil Engineering, 2021:1–11. https://doi.org/10.1155/2021/9134889
  • Zhang, Z., Shi, G., Wang, S., Fang, X., & Liu, X. (2013). Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renewable Energy. 50, 670–675. https://doi.org/10.1016/J.RENENE.2012.08.024
  • Zhou, W., Yan, C., Duan, P., Liu, Y., Zhang, Z., Qiu, X., & Li, D. (2016). A comparative study of high- and low-Al2O3 fly ash based-geopolymers: The role of mix proportion factors and curing temperature. Materials & Design, 95, 63–74. https://doi.org/10.1016/J.MATDES.2016.01.084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.