76
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Multi-walled carbon nanotubes – zinc in commercial acrylic sealant as a coating for anticorrosive protection system in metallic building structures

, , , , &
Pages 4364-4378 | Received 17 Feb 2022, Accepted 13 Dec 2022, Published online: 20 Mar 2023

References

  • Aghayere, A. O., & Vigil, J. (2020). Structural steel design (3rd ed.). Mercury Learning and Information.
  • Aglan, A., Allie, A., Ludwick, A., & Koons, L. (2007). Formulation and evaluation of nano-structured polymeric coatings for corrosion protection. Surface and Coatings Technology, 202(2), 370–378. https://doi.org/10.1016/j.surfcoat.2007.05.090
  • Alishahi, M., Monirvaghefi, S. M., Saatchi, A., & Hosseini, S. M. (2012). The effect of carbon nanotubes on the corrosion and tribological behaviour of electroless Ni-P-CNT composite coating. Applied Surface Science, 258(7), 2439–2446. https://doi.org/10.1016/j.apsusc.2011.10.067
  • Asibeluo, I. S., & Emifoniye, E. (2015). Effect of arc welding current on the mechanical properties of A36 carbon steel weld joints. International Journal of Mechanical Engineering Education, 2, 32–40. https://doi.org/10.14445/23488360/IJME-V2I9P113
  • Avci, R., Shi, X., Liu, Y., Suo, Z., & Nguyen, T. A. (2009). Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surface and Coatings Technology, 204, 237–245. https://doi.org/10.1016/j.surfcoat.2009.06.048
  • Bhaskaran, R., Bhalla, L., Rahman, A., Juneja, S., Sonik, U., Kaur, S., Kaur, J., & Rengaswamy, N. S. (2014). An analysis of the updated cost of corrosion in India. Materials Performance, 53, 56–65.
  • Brockenbrough, R. L., & Merritt, F. S. (2006). Structural steel designer’s handbook: AISC, AASHTO, AISI, ASTM, AREMA, and ASCE-07 design standards (4th ed.). McGraw-Hill.
  • Bucharsky, E. C., Real, S. G., & Vilche, J. R. (1996). Dynamic analysis of zinc-rich paint coatings performance. Corrosion Reviews, 14, 15–33. https://doi.org/10.1515/CORRREV.1996.14.1-2.15
  • Cabrera de la Cruz, D., Alberto, L. P. C., & Galván-Martínez, R. (2018). Analysis of corrosion of joints brazing copper matrix composites. Nature Reviews Materials, 23, 1–8.
  • Cai, J., Murugadoss, V., Jiang, J., Gao, X., Lin, Z., Huang, M., Guo, J., Alsareii, S. A., Algadi, H., & Kathiresan, M. (2022). Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Advanced Composites and Hybrid Materials, 5(2), 641–650. https://doi.org/10.1007/s42114-022-00473-8
  • Chang, C. H., Huang, T. C., Peng, C. W., Yeh, T. C., Lu, H. I., Hung, W. I., Weng, C. J., Yang, T. I., & Yeh, J. M. (2012). Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon N. Y., 50(14), 5044–5051. https://doi.org/10.1016/j.carbon.2012.06.043
  • Chen, W., Zhao, Y., Yang, S., Zhang, D., & Hou, H. (2021). Three-dimensional phase-field simulations of the influence of diffusion interface width on dendritic growth of Fe-0.5 wt.%C alloy. Advanced Composites and Hybrid Materials, 4(2), 371–378. https://doi.org/10.1007/s42114-021-00215-2
  • Chico, B., De la Fuente, D., & Morcillo, M. (2000). Corrosión atmosférica de metales en condiciones climáticas extremas. Boletín de la Sociedad Española de Cerámica y Vidrio, 39(3), 329–332. https://doi.org/10.3989/cyv.2000.v39.i3.850
  • Chico, B., Otero, E., Mariaca, L., & Morcillo, M. (1998). La corrosión en atmósferas marinas. Efecto de la distancia a la costa. Revista de Metalurgia, 34(Extra), 71–74. https://doi.org/10.3989/revmetalm.1998.v34.iExtra.711
  • Corvo, F., Pérez, T., Martin, Y., Reyes, J., Dzib, L. R., González-Sánchez, J., & Castañeda, A. (2008). Time of wetness in tropical climate: Considerations on the estimation of TOW according to ISO 9223 standard. Corrosion Science, 50, 206–219. https://doi.org/10.1016/j.corsci.2007.06.012
  • De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: Present and future commercial applications. Science, 339, 535–540. https://doi.org/10.1126/science.1222453
  • Di Sarli, A. R. (1995). Theoretical analysis of the behaviour and electrochemical methods employed to characterize metal/organic coatings/aqueous electrolyte systems. ANALES-CIDEPINT, CIDEPINT (pp. 181–252).
  • Dou, W., Li, W., Cai, Y., Dong, M., Wang, X., Fan, J., Zhou, J., Hou, H., Zhu, S., Chen, S., & Guo, Z. (2020). Improved corrosion resistance and increased hardness of copper substrates from Cu-Ni/Ni-P composite coatings. MRS Advances, 5(40-41), 2129–2137. https://doi.org/10.1557/adv.2020.226
  • Du, H., Ren, X., Pan, D., An, Y., Wei, Y., Liu, X., Hou, L., Liu, B., Liu, M., & Guo, Z. (2021). Effect of phosphating solution pH value on the formation of phosphate conversion coatings for corrosion behaviors on AZ91D. Advanced Composites and Hybrid Materials, 4(2), 401–414. https://doi.org/10.1007/s42114-021-00222-3
  • Farahmandian, M., Saidi, M., & Fazlinejad, S. (2021). Synthesis and characterization of nickel–cobalt spin coatings reinforced with carbon nanotubes: microstructural properties, microhardness, and corrosion resistance. Advanced Composites and Hybrid Materials, 5. https://doi.org/10.1007/s42114-021-00220-5
  • Fernández-Loyola, R., Muthuvel, M., Hernández-Maldonado, A. B., Menchaca-Rivera, J. A., Perez-Robles, J. F., Solorza-Feria, O., & Botte, G. G. (2021). Nanocomposites of multi-walled carbon nanotubes with encapsulated cobalt. Ceramics International, 47(10), 13604–13612. https://doi.org/10.1016/j.ceramint.2021.01.219
  • Jalgham, R. T. T. (2021). Theoretical, Monte Carlo simulations and quantitative structure activity relationship studies on some triazole derivatives as corrosion inhibitors for mild steel in 1 M HCl. ES Energy & Environment, 13, 39–42.
  • Jones, D. A. (1996). Principles and prevention of corrosion (2nd ed.). Pearson.
  • Koch, G. (2017). 1 – Cost of corrosion. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101105-8.00001-2
  • Kumar, A., Ghosh, P. K., Yadav, K. L., & Kumar, K. (2017). Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Composites Part B: Engineering, 113, 291–299. https://doi.org/10.1016/j.compositesb.2017.01.046
  • Li, J., Cui, J., Yang, J., Li, Y., Qiu, H., & Yang, J. (2016). Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings. Composites Science and Technology, 129, 30–37. https://doi.org/10.1016/j.compscitech.2016.04.017
  • Li, P., He, X., Huang, T.-C., White, K. L., Zhang, X., Liang, H., Nishimura, R., & Sue, H.-J. (2015). Highly effective anti-corrosion epoxy spray coatings containing self-assembled clay in smectic order. Journal of Materials Chemistry A, 3(6), 2669–2676. https://doi.org/10.1039/C4TA06221C
  • Liu, J., Zhang, J., Tang, J., Pu, L., Xue, Y., Lu, M., Xu, L., & Guo, Z. (2020). Polydimethylsiloxane resin nanocomposite coating with alternating multilayer structure for corrosion protection performance. ES Materials & Manufacturing, 10, 29–38. https://doi.org/10.30919/esmm5f912
  • Liu, S., Gu, L., Zhao, H., Chen, J., & Yu, H. (2016). Resistance of graphene-reinforced waterborne epoxy coatings. Journal of Materials Science and Technology. 32(5), 425–431. https://doi.org/10.1016/j.jmst.2015.12.017
  • Liu, S., Gu, Y., Wang, S., Zhang, Y., Fang, Y., Johnson, D. M., & Huang, Y. (2013a). Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system. Chinese Science Bulletin, 58, 2340–2346. https://doi.org/10.1007/s11434-013-5784-4
  • Liu, S., Zhao, X., Sun, H., Li, R., Fang, Y., & Huang, Y. (2013b). The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal and the Biochemical Engineering Journal. 231(2013), 441–448. https://doi.org/10.1016/j.cej.2013.07.057
  • Martínez, C., Briones, F., Villarroel, M., & Vera, R. (2018). Effect of atmospheric corrosion on the mechanical properties of SAE 1020 structural steel. Materials (Basel), 11(4), 591–516. https://doi.org/10.3390/ma11040591
  • McCormac, J. C., & Csernak, S. F. (2013). Structural steel design (5th ed.). Pearson Education Limited., USA.
  • Mishra, S., Chaudhary, P., Yadav, B. C., Umar, A., Lohia, P., & Dwivedi, D. K. (2021). Fabrication and characterization of an ultrasensitive humidity sensor based on chalcogenide glassy alloy thin films. Engineering Sciences, 15, 138–147. https://doi.org/10.30919/es8d500
  • Mokhtari, S., Yekta, B. E., Marghussian, V., & Ahmadi, P. T. (2020). Synthesis and characterization of biodegradable AZ31/calcium phosphate glass composites for orthopedic applications. Advanced Composites and Hybrid Materials, 3(3), 390–401. https://doi.org/10.1007/s42114-020-00177-x
  • Mudali, U.K., Khatak, H.S. and Raj, B. (2014). Anodic and Cathodic Protection. In Encyclopedia of Electrochemistry, A.J. Bard (Ed.). 45-62 https://doi.org/10.1002/9783527610426.bard040501
  • Munger, C. G., & Vincent, L. D. (1999). Corrosion prevention by protective coatings. NACE International.
  • Nambiar, N. K., Brindha, D., Punniyakotti, P., Venkatraman, B. R., & Angaiah, S. (2022). Derris indica leaves extract as a green inhibitor for the corrosion of aluminium in alkaline medium. Engineering Sciences, 17, 167–175. https://doi.org/10.30919/es8d540
  • Nambiar, S. S., Murthy, B. R. N., Sharma, S., Prasanna., A. A., & Chelvane, A. J. (2022). Microstructure and mechanical properties of annealed quinary Ni-Mn-Sn-Fe-In heusler alloy. Engineering Science, 17, 303–308. https://doi.org/10.30919/es8d632
  • Novák, P. (2010). 4.24 – Anodic protection. In B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H.B.T.-S.C. Stott (Eds.) (pp. 2857–2889). Elsevier. https://doi.org/10.1016/B978-044452787-5.00158-X
  • Park, S. M., & Shon, M. Y. (2015). Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating. Journal of Industrial and Engineering Chemistry, 21, 1258–1264. https://doi.org/10.1016/j.jiec.2014.05.042
  • Pérez-Cabero, M., Rodríguez-Ramos, I., & Guerrero-Ruíz, A. (2003). Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. Journal of Catalysis, 215, 305–316. https://doi.org/10.1016/S0021-9517(03)00026-5
  • Praveen, B. M., Venkatesha, T. V., Arthoba Naik, Y., & Prashantha, K. (2007). Corrosion studies of carbon nanotubes-Zn composite coating. Surface and Coatings Technology, 201(12), 5836–5842. https://doi.org/10.1016/j.surfcoat.2006.10.034
  • Praveen, B. M., & Venkatesha, T. V. (2009). Electrodeposition and properties of Zn–Ni –CNT composite coatings. Journal of Alloys and Compounds, 482(1–2), 53–57. https://doi.org/10.1016/j.jallcom.2009.04.056
  • Qiao, G., Wang, S., Wang, X., Chen, X., Wang, X., & Cui, H. (2022). Ni/Co/black phosphorus nanocomposites for Q235 carbon steel corrosion-resistant coating. Advanced Composites and Hybrid Materials, 5(1), 438–449. https://doi.org/10.1007/s42114-021-00268-3
  • Qiao, Y., Chen, Y., Li, L., Chen, J., Emori, W., Wang, X., Yang, L., Zhou, H., Song, G., Naik, N., Wang, Z., & Guo, Z. (2021). Corrosion behaviour of a nickel-free high-nitrogen stainless steel with hydrogen charging. JOM Journal of the Minerals Metals and Materials Society, 73(4), 1165–1172. https://doi.org/10.1007/s11837-021-04569-2
  • Revie, R. W., & Uhlig, H. H. (2008). Corrosion and corrosion control An introduction to corrosion science and engineering (4th ed.). John Wiley & Sons.
  • Rodríguez, A. G., Pérez, C. R. G., Borroto, O. M. R., & Oria, J. V. M. (2010). Behaviour of short-circuit frequency and duration time and electrical conductivity during arc re-ignition in SMAW (AC) with E6013 electrodes. Weld International, 24, 673–679. https://doi.org/10.1080/09507110903568869
  • Samaniego-Benitez, J. E., Ramírez-Aparicio, J., Chavez-Urbiola, I. R., Garcia-Garcia, A., Perez-Robles, J. F., & Ramirez-Bon, R. (2018). Synthesis and photocatalysis study of multiwalled carbon nanotubes grown I. Lead-based microspherical support. Fullerenes, Nanotubes and Carbon Nanostructures, 26(6), 370–378. https://doi.org/10.1080/1536383X.2018.1439022
  • Science, C., Science, M., California, S., & Angeles, L. (n.d.). Automatic classiffication of polymer coating quality using artificial neural networks.
  • Sierra, G. A., & Torres, D. M. (2012). Growth of carbon nanotubes over Colombian natural limonite ore as catalysts. Ing y Compet, 14, 139–146.
  • Song, M., Wang, J., Yuan, L., Luan, C., & Zhou, Z. (2022). Investigation on crack recovery behaviour of engineered cementitious composite (ECC). Incorporated memory alloy fiber at low temperature. ES Materials & Manufacturing, 17, 1–33. https://doi.org/10.30919/esmm5f662
  • Vathsala, K., & Venkatesha, T. V. (2011). Zn-ZrO2 nanocomposite coatings: Elecrodeposition and evaluation of corrosion resistance. Applied Surface Science, 257(21), 8929–8936. https://doi.org/10.1016/j.apsusc.2011.05.067
  • Wang, S., Ma, Q., & Li, Y. (2011). Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR. Materials and Design. 32(2), 831–837. https://doi.org/10.1016/j.matdes.2010.07.012
  • Wei, H., Ding, D., Wei, S., & Guo, Z. (2013). Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. Journal of Materials Chemistry A, 1(36), 10805–10813. https://doi.org/10.1039/c3ta11966a
  • Xin, T., Zhao, Y., Mahjoub, R., Jiang, J., Yadav, A., Nomoto, K., Niu, R., Tang, S., Ji, F., Quadir, Z., Miskovic, D., Daniels, J., Xu, W., Liao, X., Chen, L. Q., Hagihara, K., Li, X., Ringer, S., & Ferry, M. (2021). Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Science Advance, 7, 1–9. https://doi.org/10.1126/sciadv.abf3039
  • Yu, Z., Yan, Z., Zhang, F., Wang, J., Shao, Q., Murugadoss, V., Alhadhrami, A., Mersal, G. A. M., Ibrahim, M. M., El-Bahy, Z. M., Li, Y., Huang, M., & Guo, Z. (2022). Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Progress in Organic Coatings, 168, 106875. https://doi.org/10.1016/j.porgcoat.2022.106875
  • Zarco, C. R. (1988). Espectroscopía de Impedancia Electroquímica en Corrosión. Collection Bot, 17, 255–258. https://doi.org/10.3989/collectbot.1989.v17.143
  • Zhang, J., Kang, Z., Hou, D., Dong, B., & Ma, H. (2021). Wavelet power and shannon entropy applied to acoustic emission signals for corrosion detection and evaluation of reinforced concrete. ES Materials & Manufacturing, 16, 46–55. https://doi.org/10.30919/esmm5f554
  • Zhang, J., Zhang, W., Wei, L., Pu, L., Liu, J., Liu, H., Li, Y., Fan, J., Ding, T., & Guo, Z. (2019). Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromolecular Materials and Engineering, 304(12), 1970035–1970010. https://doi.org/10.1002/mame.201900374
  • Zhao, L., & Gao, L. (2004). Coating multi-walled carbon nanotubes with zinc sulfide, Journal of Materials Chemistry, 15, 1001–1004.
  • Zhu, Q., Huang, Y., Li, Y., Zhou, M., Xu, S., Liu, X., Liu, C., Yuan, B., & Guo, Z. (2021). Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Advanced Composites and Hybrid Materials, 4(3), 780–792. https://doi.org/10.1007/s42114-021-00265-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.