134
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Timber connection behaviour characterisation based on similitude laws

, , , , &
Pages 222-242 | Received 08 Jul 2022, Accepted 19 Apr 2023, Published online: 17 May 2023

References

  • Adams, C., Bös, J., Slomski, E. M., & Melz, T. (2018). Scaling laws obtained from a sensitivity analysis and applied to thin vibrating structures. Mechanical Systems and Signal Processing, 110, 590–610. https://doi.org/10.1016/j.ymssp.2018.03.032
  • Asl, M. E., Niezrecki, C., Sherwood, J., & Avitabile, P. (2016). Similitude analysis of composite I-beams with application to subcomponent testing of wind turbine blades. Experimental and Applied Mechanics, 4, 115–126. https://doi.org/10.1007/978-3-319-22449-7_14
  • Asl, M. E., Niezrecki, C., Sherwood, J., & Avitabile, P. (2017a). Experimental and theoretical similitude analysis for flexural bending of scaled-down laminated I-beams. Composite Structures, 176, 812–822. https://doi.org/10.1016/j.compstruct.2017.06.017
  • Asl, M. E., Niezrecki, C., Sherwood, J., & Avitabile, P. (2017b). Similitude analysis of thin-walled composite I-beams for subcomponent testing of wind turbine blades. Wind Engineering, 41(5), 297–312. https://doi.org/10.1177/0309524X17709924
  • Asl, M. E., Niezrecki, C., Sherwood, J., & Avitabile, P. (2019). Scaling and structural similarity under uncertainty. In R. Barthorpe (Ed.), Model validation and uncertainty quantification (Vol. 3, 167–174). Springer International Publishing. https://doi.org/10.1007/978-3-319-74793-4_21
  • Ayyub, B. M., & McCuen, R. H. (2011a). Hypothesis testing. In Probability, statistics, and reliability for engineers and scientists (3rd ed.) CRC Press.
  • Ayyub, B. M., & McCuen, R. H. (2011b). Multiple random variables. In Probability, statistics, and reliability for engineers and scientists. (3rd ed.) CRC Press.
  • Barrett, J. D., Lam, F., & Lau, W. (1995). Size effects in visually graded softwood structural lumber. Journal of Materials in Civil Engineering, 7(1), 19–30. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:1(19)
  • Bléron, L. (2000). Contribution à l’optimisation des performances d’assemblages bois en structure. Analyse de la portance dans les assemblages de type tige. Université Henri Poincaré.
  • Bodig, J., & Jayne, B. A. (1982). Mechanics of wood and wood composites. Van Nostrand Reinhold.
  • Cabrero, J. M., & Yurrita, M. (2018). Performance assessment of existing models to predict brittle failure modes of steel-to-timber connections loaded parallel-to-grain with dowel-type fasteners. Engineering Structures, 171, 895–910. https://doi.org/10.1016/j.engstruct.2018.03.037
  • Casaburo, A., Petrone, G., Franco, F., & Rosa, S. (2019). A review of similitude methods for structural engineering. Applied Mechanics Reviews, 71(3). https://doi.org/10.1115/1.4043787
  • Coutinho, C. P. J. (2017). Structural reduced scale models based on similitude theory. Faculty of Engineering of the University of Porto (FEUP).
  • Coutinho, C. P. J., Baptista, A. J., & Rodrigues, J. D. (2016). Reduced scale models based on similitude theory: A review up to 2015. Engineering Structures, 119, 81–94. https://doi.org/10.1016/j.engstruct.2016.04.016
  • Daudeville, L., Davenne, L., Richard, N., & Kawai, N. (1998). Etude du comportement parasismique de structures à ossature en bois. Revue Française de Génie Civil, 2(6), 651–665. https://doi.org/10.1080/12795119.1998.9692198
  • EN 1995-1-2. (2005). Eurocode 5: Design of timber structures. Part 1.1 General rules, General rules and rules for buildings
  • Flores-Bonano, S., Vargas-Martinez, J., Suárez, O. M., & Silva-Araya, W. (2019). Tortuosity index based on dynamic mechanical properties of polyimide foam for aerospace applications. Materials, 12(11), 1851. https://doi.org/10.3390/ma12111851
  • Folz, B., & Filiatrault, A. (2001). Cyclic analysis of wood shear walls. Journal of Structural Engineering, 127(4), 433–441. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(433)
  • Folz, B., & Filiatrault, A. (2002). A computer program for seismic analysis of woodframe structures. CUREE Publication W, CUREE-Caltech Woodframe Project.
  • Fryer, B. K., Foster, R. M., & Ramage, M. H. (2018). Size effect of large scale timber columns. Word Conference on Timber Engineering, WCTE 2018, August 20-23, 2018, Seoul, Republic of Korea.
  • Gauchía, A., Olmeda, E., Boada, M. J. L., Boada, B. L., & Díaz, V. (2014). Methodology for bus structure torsion stiffness and natural vibration frequency prediction based on a dimensional analysis approach. International Journal of Automotive Technology, 15(3), 451–461. https://doi.org/10.1007/s12239-014-0047-1
  • Guitard, D. (1987). Mécanique du matériau bois et composites. Cepadues-Editions.
  • Kasivitamnuay, J., & Singhatanadgid, P. (2018). Scaling laws for static displacement of linearly elastic cracked beam by energy method. Theoretical and Applied Fracture Mechanics, 98, 157–166. https://doi.org/10.1016/j.tafmec.2018.10.002
  • Kumar, S., Itoh, Y., Saizuka, K., & Usami, T. (1997). Pseudodynamic testing of scaled models. Journal of Structural Engineering, 123(4), 524–526. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(524)
  • Li, M., Foschi, R. O., & Lam, F. (2012). Modeling hysteretic behavior of wood shear walls with a protocol-independent nail connection algorithm. Journal of Structural Engineering, 138(1), 99–108. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000438
  • Li, Z., Ye, F., & Wu, S. (2019). Design and experimental verification of a 1/20 scale model of quayside container crane using distortion theory. Shock and Vibration, 2019, 1–10. https://doi.org/10.1155/2019/5893948
  • Lim, H., Lam, F., Foschi, R. O., & Li, M. (2017). Modeling load-displacement hysteresis relationship of a single-shear nail connection. Journal of Engineering Mechanics, 143(6). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001204
  • Luo, Z., Wang, Y., Zhu, Y., Zhao, X., & Wang, D. (2016). The similitude design method of thin-walled annular plates and determination of structural size intervals. Part C: Journal of Mechanical Engineering Science, 230(13), 2158–2168. https://doi.org/10.1177/0954406215592055
  • Luo, Z., Zhu, Y., Zhao, X., & Wang, D. (2015). Determination method of dynamic distorted scaling laws and applicable structure size intervals of a rotating thin-wall short cylindrical shell. Part C: Journal of Mechanical Engineering Science, 229(5), 806–817. https://doi.org/10.1177/0954406214541645
  • Madsen, B., & Buchanan, A. H. (1986). Size effects in timber explained by a modified weakest link theory. Canadian Journal of Civil Engineering, 13(2), 218–232. https://doi.org/10.1139/l86-030
  • Mascia, N., Lúcia, C., & Santana, O. (2010). Modeling of nailed joints in wooden structures. 11th World Conference on Timber Engineering 2010 (p. 3). WCTE 2010.
  • Moncarz, P., & Krawinkler, H. (1981). Theory and Application of Experimental Model Analysis in Earthquake Engineering
  • NF EN 338. (2016). Structural timber—Strength classes
  • NF EN 12512. (2002). Timber structures—Test methods—Cyclic testing of joints made with mechanical fasteners
  • NF EN 26891. (1991). Timber structures. Joints made with mechanical fasteners. General principles for the determination of strength and deformation characteristics.
  • Polsinelli, J., & Kavvas, M. L. (2016). A comparison of the modern lie scaling method to classical scaling techniques. Hydrology and Earth System Sciences, 20(7), 2669–2678. https://doi.org/10.5194/hess-20-2669-2016
  • Potter, M., Wiggert, D., & Ramadan, B. (2017). Dimensional analysis and similitude. In Mechanics of Fluids, Cengage Learning EMEA, 5th ed., 241–274.
  • Richard, N., Daudeville, L., & Yasumura, M. (2004). Calcul dynamique de structures en bois fondé sur les comportements des assemblages. Revue Française de Génie Civil, 8(2–3), 289–302. https://doi.org/10.1080/12795119.2004.9692607
  • Rosa, S., Franco, F., Ciappi, E., & Meruane, V. (2016). Analysis of distorted similitudes for the frequency response of composite plates. Aerotecnica Missili & Spazio, 95(1), 24–31. https://doi.org/10.1007/BF03404711
  • Simitses, G. J., & Rezaeepazhand, J. (1993). Structural Similitude and design of scaled down laminated models (NASA CR 194687). NASA Langley Research Center.
  • Sousseau, Y., Elachachi, S. M., Chaplain, M., Faye, C., Catterou, T., & Garcia, P. (2021). Characterisation of timber connection behaviour from reduced scaled experiments based on similitude law. World Conference on Timber Engineering 2020 (p. 9). WCTE 2020.
  • Torkamani, S., Jafari, A. A., & Navazi, H. M. (2008). Scaled down models for free vibration analysis of orthogonally stiffened cylindrical shells using similitude theory
  • Vassalos, D. (1998). Physical modelling and similitude of marine structures. Ocean Engineering, 26(2), 111–123. https://doi.org/10.1016/S0029-8018(97)10004-X
  • Verdret, Y., Faye, C., Elachachi, S. M., Magorou, L. L., & Garcia, P. (2015). Experimental investigation on stapled and nailed connections in light timber frame walls. Construction and Building Materials, 91, 260–273. https://doi.org/10.1016/j.conbuildmat.2015.05.052
  • Vessereau, A. (1973). Intervalles de confiance et tests dans le cas de changement de variable cas de la loi log-normale. Revue de Statistique Appliquée, vol. 12(1), 59–66.
  • Wissmann, J. W. (1968). Dynamic Stability of Spacevehicles (p. 53).
  • Wu, D., Yamazaki, Y., Sawada, S., & Sakata, H. (2018). Shaking table tests on 1/3-scale model of wooden horizontal hybrid structure. Journal of Structural Engineering, 144(8), 04018123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002115
  • Wu, J.-J., Cartmell, M. P., & Whittaker, A. R. (2002). Prediction of the vibration characteristics of a full-size structure from those of a scale model. Computers & Structures, 80(18–19), 1461–1472. https://doi.org/10.1016/S0045-7949(02)00095-0
  • Xu, B. (2009). Modélisation du comportement mécanique d’assemblages bois avec prise en compte de critères de rupture. Université Blaise Pascal.
  • Xue, J., & Xu, D. (2018). Shake table tests on the traditional column-and-tie timber structures. Engineering Structures, 175, 847–860. https://doi.org/10.1016/j.engstruct.2018.08.090
  • Yu, H., Zhang, W., Zhang, Y., & Sun, Y. (2010). Shaking table test and numerical analysis of a 1:12 scale model of a special concentrically braced steel frame with pinned connections. Earthquake Engineering and Engineering Vibration, 9(1), 51–63. https://doi.org/10.1007/s11803-009-8049-0
  • Zhang, W. D., Luo, Z., Ge, X. B., Zhang, Y. Q., & Guo, S. W. (2020). Determination method of scaling laws based on least square method and applied to rectangular thin plates and rotor-bearing systems. Mechanics Based Design of Structures and Machines, 48(2), 241–265. https://doi.org/10.1080/15397734.2019.1660183
  • Zhong, Y., Ren, H. Q., & Jiang, Z. H. (2016). Experimental and statistical evaluation of the size effect on the bending strength of dimension lumber of northeast China larch. Materials, 9(2), 89. https://doi.org/10.3390/ma9020089
  • Zhu, Y., Wang, Y., Luo, Z., Han, Q., & Wang, D. (2017). Similitude design for the vibration problems of plates and shells: A review. Frontiers of Mechanical Engineering, 12(2), 253–264. https://doi.org/10.1007/s11465-017-0418-1
  • Zohuri, B. (2015). Similitude theory and applications. In Dimensional analysis and self-similarity methods for engineers and scientists. Springer International Publishing. https://doi.org/10.1007/978-3-319-13476-5_2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.