147
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of freeze–thaw actions on mechanical properties and constitutive model for diesel-contaminated soil

, , &
Pages 493-517 | Received 15 Dec 2022, Accepted 19 May 2023, Published online: 03 Jun 2023

References

  • Abdelhalim, R. A., Selamat, M. R., & Ramli, H. (2021). Evaluation of strength properties of oil-contaminated sands upon stabilisation with laterite soil. International Journal of Pavement Engineering, 1–17. https://doi.org/10.1080/10298436.2021.1876875
  • Aiban, S. A. (1998). The effect of temperature on the engineering properties of oil-contaminated sand. Environment International, 24(1–2), 153–161. https://doi.org/10.1016/S0160-4120(97)00131-1
  • Ammami, M. T., Benamar, A., Wang, H., Bailleul, C., Legras, M., Le Derf, F., & Portet-Koltalo, F. (2014). Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. International Journal of Environmental Science and Technology, 11(7), 1801–1816. https://doi.org/10.1007/s13762-013-0395-9
  • Aubert, J. E., & Gasc-Barbier, M. (2012). Hardening of clayey soil blocks during freezing and thawing cycles. Applied Clay Science, 65–66, 1–5. https://doi.org/10.1016/j.clay.2012.04.014
  • Baoune, H., Hadj-Khelil, A. O. E., Pucci, G., Sineli, P., Loucif, L., & Polti, M. A. (2018). Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicology and Environmental Safety, 147, 602–609. https://doi.org/10.1016/j.ecoenv.2017.09.013
  • Beier, N. A., & Sego, D. C. (2009). Cyclic freeze–thaw to enhance the stability of coal tailings. Cold Regions Science and Technology, 55(3), 278–285. https://doi.org/10.1016/j.coldregions.2008.08.006
  • Binal, A., & Viran, P. (2018). Effects of repeated freeze–thaw cycles on physico-mechanical properties of cohesive soils. Arabian Journal of Geosciences, 11(11), 250. https://doi.org/10.1007/s12517-018-3592-5
  • Carrigy, M. A. (1967). The physical and chemical nature of typical tar sand: Bulk properties and behaviour. Proceedings of the International 7th World Petroleum Congress, 1, 573–581.
  • Dalla Santa-. G., Cola, S., Secco, M., Tateo, F., Sassi, R., & Galgaro, A. (2019). No AccessMultiscale analysis of freeze–thaw effects induced by ground heat exchangers on permeability of silty clays. Géotechnique, 69(2), 95–105. https://doi.org/10.1680/jgeot.16.P.313
  • Dalla Santa. G., Galgaro, A., Tateo, F., & Cola, S. (2016). Induced thermal compaction in cohesive sediments around a borehole heat exchanger: Laboratory tests on the effect of pore water salinity. Environmental Earth Sciences, 75(3), 1–11. https://doi.org/10.1007/s12665-015-4952-z
  • Dan, C., Liu, J., & Xu, L. I. (2016). A constitutive model with double yielding surfaces for silty sand after freeze–thaw cycles. Chinese Journal of Rock Mechanics and Engineering, 35(3), 623–630.
  • Das, B. M. (2014). Advanced soil mechanics (4th ed.). CRC Press, Taylor & Francis Group.
  • Ebadi, A., Sima, N. A. K., Olamaee, M., Hashemi, M., & Nasrabadi, R. G. (2018). Remediation of saline soils contaminated with crude oil using the halophyte salicornia persica in conjunction with hydrocarbon-degrading bacteria. Journal of Environmental Management, 219, 260–268. https://doi.org/10.1016/j.jenvman.2018.04.115
  • Eigenbrod, K. D. (1996). Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils. Canadian Geotechnical Journal, 33(4), 529–537. https://doi.org/10.1139/t96-079-301
  • Evgin, E., & Das, B. M. (1992). Mechanical behavior of an oil-contaminated sand. In A. Usmen (Eds.), Environmental Geotechnology Proceeding (pp. 101–108). Mediterranean Conference. Balkema Publishers.
  • Fuchs, G., Boll, M., & Heider, J. (2011). Microbial degradation of aromatic compounds-from one strategy to four. Nature Reviews. Microbiology, 9(11), 803–816. https://doi.org/10.1038/nrmicro2652
  • Ghaly, A. M. (2001). Strength remediation of oil contaminated Sands [Paper presentation]. The Seventeenth International Conference on Solid Waste Technology and Management, Philadelphia.
  • Haghsheno, H., & Arabani, M. (2022). Geotechnical properties of oil-polluted soil: A review. Environmental Science and Pollution Research, 29(22), 32670–32701. https://doi.org/10.1007/s11356-022-19418-1
  • Hill, R. (1950). The mathematical theory of plasticity. Clarendon Press.
  • Hu, T., Liu, J., Chang, D., Fang, J., & Xu, A. (2018). Influence of freeze–thaw cycling on mechanical properties of silty clay and Ducan–Chang constitutive model. China Journal of Highway and Transport About Journal, 31(2), 298–307.
  • Izdebska-Mucha, D., Trzcińsk, J., Żbik, M. S., & Frost, R. L. (2011). Influence of hydrocarbon contamination on clay soil microstructure. Clay Minerals, 46(1), 47–58. https://doi.org/10.1180/claymin.2011.046.1.47
  • Kererat, C. (2019). Effect of oil-contamination and water saturation on the bearing capacity and shear strength parameters of silty sandy soil. Engineering Geology, 257, 105138. https://doi.org/10.1016/j.enggeo.2019.05.015
  • Kermani, M., & Ebadi, T. (2012). The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil and Sediment Contamination: An International Journal, 21(5), 655–671. https://doi.org/10.1080/15320383.2012.672486
  • Khamehchiyan, M., Charkhabi, A. H., & Tajik, M. (2006). Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89(3). https://doi.org/10.1016/j.enggeo.2006.10.009
  • Lee, W., Bohra, N. C., Altschaeffl, A. G., & White, T. D. (1995). Resilient modulus of cohesive soils and the effect of freeze–thaw. Canadian Geotechnical Journal, 32(4), 559–568. https://doi.org/10.1139/t95-059
  • Lei, X. Y. (1985). Pore distribution characteristics of loess in Longdong, northern Shaanxi. Chinese Science Bulletin, 03, 206–209.
  • Li, G. Y., Ma, W., Li, X. B., Mu, Y. H., & Miao, Y. C. (2011). Review and prospect of migration of petroleum pollutants in permafrost region. Journal of Glaciology and Geocryology, 33(4), 947–952.
  • Li, G. Y., Ma, W., Mu, Y. H., Wang, F., Fan, S. Z., & Wu, Y. H. (2017). Effects of freeze–thaw cycle on engineering properties of loess used as road fills in seasonally frozen ground regions, North China. Journal of Mountain Science, 14(2), 356–368. https://doi.org/10.1007/s11629-016-4005-4
  • Li, L., Qin, L., Xiao, H., Hu, Z., Xu, G., & Ma, Q. (2020). Mechanical properties distribution of lime-fly ash solidified oil contaminated soil in a coastal environment. European Journal of Environmental and Civil Engineering, 1–22. https://doi.org/10.1080/19648189.2020b.1781695
  • Liu, Y. N., Huang, R. Q., Liu, E. L., & Hou, F. (2021). Mechanical behavior and constitutive model of tailing soils subjected to freeze–thaw cycles. European Journal of Environmental and Civil Engineering, 25(4), 673–695. https://doi.org/10.1080/19648189.2018.1541143
  • Liu, Y. N., Liu, E. L., & Yin, Z. Y. (2020). Constitutive model for tailing soils subjected to freeze–thaw cycles based on meso-mechanics and homogenization theory. Acta Geotechnica, 15(9), 2433–2450. https://doi.org/10.1007/s11440-020-00937-5
  • Liu, J., Zhang, X., Li, L., & Saboundjian, S. (2018). Resilient behavior of unbound granular materials subjected to a closed-system freeze–thaw cycle. Journal of Cold Regions Engineering, 32(1), 04017015. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000142
  • Nasehi, S. A., Uromeihy, A., Nikudel, M. A., & Morsali, A. (2016). Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotechnical and Geological Engineering, 34(1), 333–345. https://doi.org/10.1007/s10706-015-9948-7
  • Ola, S. A. (1991). Geotechnical properties and behavior of Nigerian Tar sand. Engineering Geology, 30(3–4), 325–336. https://doi.org/10.1016/0013-7952(91)90066-T
  • Proskin, S., Sego, D., & Alostaz, M. (2010). Freeze–thaw and consolidation tests on Suncor mature fine tailings (MFT). Cold Regions Science and Technology, 63(3), 110–120. https://doi.org/10.1016/j.coldregions.2010.05.007
  • Qu, Y. L., Chen, G. L., Niu, F. J., Ni, W. K., Mu, Y. H., & Luo, J. (2019). Effect of freeze–thaw cycles on uniaxial mechanical properties of cohesive coarse grained soils. Journal of Mountain Science, 16(9), 2159–2170. https://doi.org/10.1007/s11629-019-5426-7
  • Rajabi, H., & Sharifipour, M. (2019). Geotechnical properties of hydrocarbon-contaminated soils: A comprehensive review. Bulletin of Engineering Geology and the Environment, 78(5), 3685–3717. https://doi.org/10.1007/s10064-018-1343-1
  • Roman, L. T., & Zhang, Z. (2010). Effect of freezing-thawing on the physico-mechanical properties of a Morianic clayey loam. Soil Mechanics and Foundation Engineering, 47(3), 96–101. https://doi.org/10.1007/s11204-010-9095-3
  • Safehian, H., Rajabi, A. M., & Ghasemzadeh, H. (2018). Effect of diesel-contamination on geotechnical properties of illite soil (p. 241). Eng Geo. https://doi.org/10.1016/j.enggeo.2018.04.020
  • Salimnezhad, A., Soltani-Jigheh, H., & Soorki, A. A. (2021). Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 653–670. https://doi.org/10.1016/j.jrmge.2020.11.011
  • Shen, Z. J. (1995). Double hardening model of clay. Rock and Soil Mechanics, 01, 1–8.
  • Wang, J., Xu, X., Zhang, M., Bai, R., Liu, Y., & Wang, Y. (2022). Regulating the albedo and radiation absorption of engineering surfaces for cooling the embankments in high-altitude permafrost regions. International Journal of Heat and Mass Transfer, 196, 123265 10.1016/j.ijheatmasstransfer.2022.123265
  • Wang, B., Xu, X., Wang, X., Gu, Q., & Chen, T. (2023). Mechanical behavior and strength criterion of frozen silty clay under complex stress paths. Geoderma, 435, 116506 10.1016/j.geoderma.2023.116506
  • Wang, D., Liu, E. L., Zhang, D., Yue, P., Wang, P., Kang, J., & Yu, Q. H. (2021). An elasto-plastic constitutive model for frozen soil subjected to cyclic loading. Cold Regions Science and Technology, 189, 103341. https://doi.org/10.1016/j.coldregions.2021.103341
  • Wang, D. Y., Ma, W., Niu, Y. H., Chang, X. X., & Wen, Z. (2007). Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay. Cold Regions Science and Technology, 48(1), 34–43. https://doi.org/10.1016/j.coldregions.2006.09.008
  • Xu, X. T., Zhang, W. D., & Wang, Y. T.(2022) Measuring and modeling the dielectric constant of soil during freezing and thawing processes: an application on silty clay. Acta Geotechnica, 17(9): 3867–3886, 10.1007/s11440-022-01487-8
  • Xu, X., Li, G., Zhao, Y., & Liu, T. (2023). Analytical solutions for heat conduction problems with three kinds of periodic boundary conditions and their applications. Applied Mathematics and Computation, 442, 127735 10.1016/j.amc.2022.127735
  • Xu, X., Bai, R., Lai, Y., Zhang, M., & Ren, J. (2020). Work conjugate stress and strain variables for unsaturated frozen soils. Journal of Hydrology, 582, 124537 10.1016/j.jhydrol.2019.124537
  • Yu, Y. Y., Liu, E. L., Yu, Q. H., Zhang, G. K., & Ye, X. (2022). Effects of freeze–thaw cycles on the mechanical properties of the core-wall contact clay of a dam. International Journal of Civil Engineering, 20(7), 779–791. https://doi.org/10.1007/s40999-022-00702-7
  • Zhang, W., Bai, R., Xu, X., & Liu, W. (2021). An evaluation of soil thermal conductivity models based on the porosity and degree of saturation and a proposal of a new improved model. International Communications in Heat and Mass Transfer, 129, 105738 10.1016/j.icheatmasstransfer.2021.105738

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.