161
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Constitutive model for steel fiber reinforced concrete under shear and tension accounting for fiber orientation effect

ORCID Icon, , , &
Pages 547-572 | Received 21 Apr 2022, Accepted 15 May 2023, Published online: 08 Jun 2023

References

  • Ali, M. A., & White, R. N. (1999). Enhanced contact model for shear friction of normal and high-strength concrete. ACI Structural Journal, 96(3), 348-360. https://doi.org/10.14359/668
  • Alwan, J., Naaman, A. E., & Guerrero, P. (1999). Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concrete Science and Engineering, 1(1), 15–25. ISSN 1295–2826.
  • Baby, F. (2012). Contribution à l’identification et la prise en compte du comportement en traction des BFUP à l’échelle de la structure. [PhD thesis]. Université Paris-Est.
  • Banthia, N., & Nandakumar, N. (2003). Crack growth resistance of hybrid fiber reinforced cement composites. Cement and Concrete Composites, 25(1), 3–9. ISSN 09589465 https://doi.org/10.1016/S0958-9465(01)00043-9
  • Barros, J. A. O., Cunha, V. M. C. F., Ribeiro, A. F., & Antunes, J. A. B. (2005). Post-cracking behaviour of steel fibre reinforced concrete. Materials and Structures, 38(1), 47–56. ISSN 18716873. https://doi.org/10.1007/BF02480574
  • Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Matériaux et Constructions, 16(3), 155–177. ISSN 002554321871-6873. https://doi.org/10.1007/BF02486267
  • Bazant, Z., & Planas, J. (1998). Fracture and size effect in concrete and other quasi-brittle materials. CRC Press.
  • Bentur, A., & Mindess, S. (1990). Fibre Reinforced Cementitious Composites. Elsevier Applied Science. Routledge, Ed, ISBN 1-85166-393-2.
  • Brandt, A. M. (1985). On the optimal direction of short metal fibres in brittle matrix composites. Journal of Materials Science, 20(11), 3831–3841. https://doi.org/10.1007/BF00552371
  • Budiansky, B., & O'connell, R. J. (1976). Elastic moduli of a cracked solid. International Journal of Solids and Structres, 12(2), 81–97. ISSN 00207683 https://doi.org/10.1016/0020-7683(76)90044-5
  • Carvalho, M. R., Joaquim, A. O., Barros, Y., Zhang, D., & Dias-da, C. (2020). A computational model for simulation of steel fibre reinforced concrete with explicit fibres and cracks. Computer Methods in Applied Mechanics and Engineering, 363, 112879. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2020.112879
  • Casanova, P., Rossi, P., & Schaller, I. (1997). Can steel fibers replace transverse reinforcements in reinforced concrete beams? ACI Materials Journal, 94(5), 341–354.
  • Chanvillard, G. (1992). Analyse expérimentale et modélisation micromécanique du comportement des fibres d’acier tréfilées, ancrées dans une matrice cimentaire, volume OA12 of Etudes et recherches des laboratoires des ponts et chausées - Série Ouvrages d’Art. Laboratoire Central des Ponts et Chaussées, ISBN 978-2-7208-2240-7.
  • Chiew, S. M., Ibrahim, I. S., Jamaluddin, N., Sarbini, N. N., Ma, C. K., & Ahmad, Y. (2020). Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses. ACI Structural Journal, 117(4), 267-278. ISSN 08893241. https://doi.org/10.14359/51723545
  • Cucchiara, C., La Mendola, L., & Papia, M. (2004). Effectiveness of stirrups and steel fibres as shear reinforcement. Cement and Concrete Composites, 26(7), 777–786. ISSN 09589465. https://doi.org/10.1016/j.cemconcomp.2003.07.001
  • de Borst, R., & Nauta, P. (1985). Non-orthogonal cracks in a smeared finite element model. Engineering Computations, 2(1), 35–46. ISSN 02644401. https://doi.org/10.1108/eb023599
  • Dupont, D., & Vandewalle, L. (2005). Distribution of steel fibres in rectangular sections. Cement and Concrete Composites, 27(3), 391–398. ISSN 09589465. https://doi.org/10.1016/j.cemconcomp.2004.03.005
  • EDF. (2017). Finite element Code_aster - Analysis of Structures and Thermomechanics for Studies and Research. Published: Open source on www.code-aster.org.
  • Foster, S. J., Lee, G. G., & Htut, T. N. S., June (2007). Radiographic imaging for the observation of Modes I and II fracture in Fibre Reinforced Concrete. Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 3:1457–1465.
  • Grünewald, S. (2004). Performance-based design of self-compacting fibre reinforced concrete [PhD Thesis]. Delft University.
  • Guénet, T. (2016). Modélisation du comportement des bétons fibrés à ultra-hautes performances par la micromécanique: effet de l’orientation des fibres à l’échelle de la structure [PhD thesis]. Université Paris-Est, Université Laval.
  • Guénet, T., Baby, F., Duhamel-Labrecque, Y., Meulenyzer, S., Sorelli, L., Toutlemonde, F., & Bernardi, S. (2016). Numerical Modeling of UHPFRC Tensile Behavior by a Micromechanics FEM Model Taking into Account Fiber Orientation [Paper presentation]. Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS. https://doi.org/10.21012/FC9.010
  • Katz, A., & Li, V. C. (1995). Inclination angle effect of carbon fibers in cementitious composites. Journal of Engineering Mechanics, 121(12), 1340–1348. ISSN 07339399. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1340)
  • Khaloo, A. R., & Kim, N. (1997). Influence of concrete and fiber characteristics on behavior of steel fiber reinforced concrete under direct shear. ACI Materials Journal, 94(6), 592–601. ISSN 0889325X https://doi.org/10.14359/344
  • Khanlou, A., MacRae, G. A., Scott, A. N., Hicks, S. J., & Clifton, G. C. (2013). Shear performance of steel fibre-reinforced concrete. In Steel Innovations Conference, page 7, Christchurch, New Zealand
  • Krenchel, H. (1975). Fibre spacing and specific fibre surface. In A. M. Neville (Ed.), RILEM Symposium, Fibre Reinforced Cement and Concrete. Construction Press. ISBN 0-904406-10-5.
  • Laranjeira, F. (2010). Design-oriented constitutive model for steel fiber reinforced concrete. [PhD Thesis]. Universitat Politècnica de Catalunya.
  • Lee, G. G., & Foster, S. J, and University of New South Wales. School of Civil and Environmental Engineering. (2007). Behaviour of steel fibre reinforced mortar in shear III: Variable engagement model II. Technical Report UNICIV Report No. R-448, University of New South Wales, Sydney.
  • Lee, G., & Foster, S. (2006). Behaviour of Steel Fibre Reinforced Mortar in Shear I: Direct Shear Testing. Scientific UNICIV No. R-444, University of New South Wales Concrete Testing Laboratory, October.
  • Leung, C. K. Y., & Li, V. C. (1992). Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites. Journal of the Mechanics and Physics of Solids, 40(6), 1333–1362. ISSN 00225096. https://doi.org/10.1016/0022-5096(92)90018-W
  • Li, B., Maekawa, K., & Okamura, H. (1989). Contact density model for stress transfer across cracks in concrete. Journal of Faculty of Engineering, the University of Tokyo, 40, 9–52.
  • Li, V. C., Wang, Y., & Backer, S. (1991). A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. Journal of the Mechanics and Physics of Solids, 39(5), 607–625. ISSN 00225096. https://doi.org/10.1016/0022-5096(91)90043-N
  • Lin, Z., & Li, V. C. (1997). Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. Journal of the Mechanics and Physics of Solids, 45(5), 763–787. ISSN 00225096. https://doi.org/10.1016/S0022-5096(96)00095-6
  • Matos, L. M., Barros, J. A., Ventura-Gouveia, A., & Calçada, R. A. (2020). Constitutive model for fibre reinforced concrete by coupling the fibre and aggregate interlock resisting mechanisms. Cement and Concrete Composites, 111, 103618. ISSN 09589465. https://doi.org/10.1016/j.cemconcomp.2020.103618
  • Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), 571–574. ISSN 00016160. https://doi.org/10.1016/0001-6160(73)90064-3
  • Mudadu, A., Tiberti, G., Germano, F., Plizzari, G. A., & Morbi, A. (2018). The effect of fiber orientation on the post-cracking behavior of steel fiber reinforced concrete under bending and uniaxial tensile tests. Cement and Concrete Composites, 93, 274–288. ISSN 09589465. https://doi.org/10.1016/j.cemconcomp.2018.07.012
  • Ng, T.S., Soe Htut, T. N., & Foster, S. J. (2012). Fracture of Steel Fibre Reinforced Concrete - The Unified Variable Engagement Model. UNICIV REPORT R-460, University of New South Walesjira
  • Resplendino, J., & Toutlemonde, F. (2011). Designing and Building with UHPFRC. John Wiley & Sons. ISBN 978-1-84821-271-8.
  • Rossi, P. (2002). Le développement industriel des BÉtons de FIbres Métalliques: Projet national BEFIM: Conclusions et recommandations. Presses de l’Ecole Nationale des Ponts et Chaussées
  • Soetens, T., & Matthys, S. (2017). Shear-stress transfer across a crack in steel fibre-reinforced concrete. Cement and Concrete Composites, 82, 1–13. ISSN 09589465. https://doi.org/10.1016/j.cemconcomp.2017.05.010
  • Sorelli, L., Ulm, F.-J., & Toutlemonde, F. (2007). Fracture Stability and Micromechanics of Strain Hardening Cementitious Composites. In 6th International Conference on Fracture Mechanics of Concrete and Structures (FRAMCOS06) (Vol. 3, pp. 1403–1411), Catania, Italy.
  • Tailhan, J.-L., Rossi, P., & Daviau-Desnoyers, D. (2015). Probabilistic numerical modelling of cracking in steel fibre reinforced concretes (SFRC) structures. Cement and Concrete Composites, 55, 315–321. ISSN 09589465. 2014.09.017. https://doi.org/10.1016/j.cemconcomp
  • Ventura-Gouveia, A. (2011). Constitutive models for the material nonlinear analysis of concrete structures including time-dependent effects [PhD thesis]. Universidade do Minho, Portugal.
  • Walraven, J. (1980). Aggregate interlock: A theoretical and experimental analysis. Institutional Repository. Delft University Press.
  • Walraven, J. C., & Reinhardt, H. W. (1981). Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading, HERON, 26(1A). ISSN 0046–7316.
  • Wu, C., Leung, C. K. Y., & Li, V. C. May (2018). Derivation of crack bridging stresses in engineered cementitious composites under combined opening and shear displacements. Cement and Concrete Research, 107, 253–263. ISSN 00088846. https://doi.org/10.1016/j.cemconres.2018.02.027
  • Yang, E.-H., Wang, S., Yang, Y., & Li, V. C. (2008). Fiber-bridging constitutive law of engineered cementitious composites. Journal of Advanced Concrete Technology, 6(1), 181–193. ISSN 134680141347-3913. https://doi.org/10.3151/jact.6.181
  • Zhan, Y., & Meschke, G. (2016). Multilevel computational model for failure analysis of steel-fiber–reinforced concrete structures. Journal of Engineering Mechanics, 142(11), 04016090. ISSN 0733-9399, 19437889. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001154

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.