57
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Residual alkali–silica reaction of coarse recycled concrete aggregate based on the application of a prescriptive measure from the Argentinian regulation

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 573-590 | Received 28 Sep 2022, Accepted 24 May 2023, Published online: 06 Jul 2023

References

  • ANEFA. (2019). El sector de los áridos: Líder mundial en suministro de recursos naturales. https://www.aridos.org/el-sector-de-los-aridos-lider-mundial-en-suministro-de-recursos-naturales/
  • ASTM. (2020). Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM C305. ASTM.
  • Barreto Santos, M., de Brito, J., & Santos Silva, A. (2009). Métodos de evaluación de las reacciones álcali-sílice en hormigones con áridos reciclados. Revista Ingeniería de Construcción, 24(2), 141–152. https://doi.org/10.4067/S0718-50732009000200002
  • Barreto Santos, M., de Brito, J., & Santos Silva, A. (2020). A review on alkali–silica reaction evolution in recycled aggregate concrete. Materials, 13(11), 2625. https://doi.org/10.3390/ma13112625
  • Batic, O., Cortelezzi, C., Pavlicevic, R., & Traversa, L. (1995). Caracterización tecnológica de las areniscas cementadas con calcedonia y ópalo del noroeste de la provincia del Chaco, República Argentina. In Proc., Memorias 12° Reunión Técnica de la AATH (pp. 191–197). Argentina Association of Concrete Technology.
  • BS. (2002). Aggregates for concrete. BS EN 12620. European Committee for Standardization.
  • Coelho dos Santos, G., & Falcone, D. (2012). Reacción álcali-agregado en areniscas cuarzosas de la Formación Las Piedritas (Chaco) y cuarcitas de la Formación Balcarce (Buenos Aires), utilizadas como agregados para hormigón. In Proc., Memorias XIII Reunión Argentina de Sedimentología, Eds. Salfity, J.A., Marquillas, R., del Papa, C., Gorustovich, S., Arnosio, M.,Payrola, P. & Monaldi, C.R. (pp. 53–54). Argentina Association of Sedimentology.
  • CPH. (2021). Estructuras de hormigón. Propiedades tecnológicas de los materiales. In Código Estructural (E-libro), Min. de Transp., Mov. y Agen. Urb., Gobierno de España., Capítulo 8 (pp. 95–153). https://www.mitma.gob.es/organos-colegiados/comision-permanente-del-hormigon/cph/codigo-estructural
  • Delobel, F., Bulteel, D., Mechling, J. M., Lecomte, A., Cyr, M., & Rémond, S. (2016). Application of ASR tests to recycled concrete aggregates: Influence of water absorption. Construction and Building Materials, 124, 714–721. https://doi.org/10.1016/j.conbuildmat.2016.08.004
  • DIN. (2002). Aggregates for mortar and concrete, part 100: Recycled aggregates. DIN 4226–100.
  • Esposito, R., Anaç, C., Hendriks, M. A. N., & Çopuroğlu, O. (2016). Influence of the alkali–silica reaction on the mechanical degradation of concrete. Journal of Materials in Civil Engineering, 28(6), 04016007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001486
  • Etxeberria, M., & Vázquez, E. (2010). Reacción álcali-sílice en el hormigón debido al mortero adherido del árido reciclado. Materiales de Construcción, 60(297), 47–58. https://doi.org/10.3989/mc.2010.46508
  • Giaccio, G., Bossio, M. E., Torrijos, M. C., & Zerbino, R. (2015). Contribution of fiber reinforcement in concrete affected by alkali–silica reaction. Cement and Concrete Research, 67, 310–317. https://doi.org/10.1016/j.cemconres.2014.10.016
  • Giaccio, G., Torrijos, M. C., Milanesi, C., & Zerbino, R. (2019). Alkali–silica reaction in plain and fibre concretes in field conditions. Materials and Structures, 52(2), 31. https://doi.org/10.1617/s11527-019-1332-2
  • Giaccio, G., Zerbino, R., Ponce, J. M., & Batic, O. R. (2008). Mechanical behavior of concretes damaged by alkali–silica reaction. Cement and Concrete Research, 38(7), 993–1004. https://doi.org/10.1016/j.cemconres.2008.02.009
  • Global Aggregates Information Network. (2019). Global aggregates growth examined by GAIN convenor Jim O’Brien. Global Aggregates Information Network. https://www.aggbusiness.com/feature/global-aggregates-growth-examined-gain-convenor-jim-obrien
  • Gómez, J. M., Agulló, L., & Vázquez, E. (2001). Cualidades físicas y mecánicas de los agregados reciclados de concreto. Construcción y Tecnología, XIII(157), 10–22.
  • Gonçalves, A., Esteves, A., & Vieira, M. (2004). Influence of recycled concrete aggregates on concrete durability. In E. Vázquez, Ch. F. Hendriks, & G. M. T. Janssen (Eds.), Proceedings of the international RILEM conference on the use of recycled materials in building and structures (pp. 554–562). RILEM Publications S.A.R.L.
  • Hansen, T. C. (1986). Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Materials and Structures, 19(3), 201–246. https://doi.org/10.1007/BF02472036
  • IRAM. (2013). Agregados. Métodos para la determinación del cambio de largo en prismas de hormigón, debido a la reacción álcali-agregado. IRAM 1700.
  • IRAM. (2016). Agregado grueso para hormigón de cemento. Requisitos y métodos de ensayo. IRAM 1531.
  • Islam, M. S., & Ghafoori, N. (2015). Relation of ASR-induced expansion and compressive strength of concrete. Materials and Structures, 48(12), 4055–4066. https://doi.org/10.1617/s11527-014-0465-6
  • Johnson, R., & Shehata, M. H. (2016). The efficacy of accelerated test methods to evaluate alkali silica reactivity of recycled concrete aggregates. Construction and Building Materials, 112, 518–528. https://doi.org/10.1016/j.conbuildmat.2016.02.155
  • Kongshaug, S. S., Oseland, O., Kanstad, T., Hendriks, M. A. N., Rodum, E., & Markeset, G. (2020). Experimental investigation of ASR-affected concrete – The influence of uniaxial loading on the evolution of mechanical properties, expansion and damage indices. Construction and Building Materials, 245, 118384. https://doi.org/10.1016/j.conbuildmat.2020.118384
  • Kou, S. C., & Poon, C. S. (2015). Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. Construction and Building Materials, 77, 501–508. https://doi.org/10.1016/j.conbuildmat.2014.12.035
  • Kurda, R., de Brito, J., & Silvestre, J. D. (2017). Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties. Construction and Building Materials, 157, 554–572. https://doi.org/10.1016/j.conbuildmat.2017.09.128
  • Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2011). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26(1), 565–573. https://doi.org/10.1016/j.conbuildmat.2011.06.059
  • Levy, S. M., & Helene, P. (2004). Durability of recycled aggregates concrete: A safe way to sustainable development. Cement and Concrete Research, 34(11), 1975–1980. https://doi.org/10.1016/j.cemconres.2004.02.009
  • Limbachiya, M. C., Leelawat, T., & Dhir, R. K. (2000). Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 33(9), 574–580. https://doi.org/10.1007/BF02480538
  • Locati, F., Zega, C., Coelho dos Santos, G., Marfil, S., & Falcone, D. (2021). Petrographic method to semi-quantify the content of particles with reactive components and residual mortar in ASR-affected fine recycled concrete aggregates. Cement and Concrete Composites, 119, 104003. https://doi.org/10.1016/j.cemconcomp.2021.104003
  • Mefteh, H., Kebaïli, O., Oucief, H., Berredjem, L., & Arabi, N. (2013). Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. Journal of Cleaner Production, 54, 282–288. https://doi.org/10.1016/j.jclepro.2013.05.009
  • Mohammadi, A., Ghiasvand, E., & Nili, M. (2020). Relation between mechanical properties of concrete and alkali–silica reaction (ASR): A review. Construction and Building Materials, 258, 119567. https://doi.org/10.1016/j.conbuildmat.2020.119567
  • Moriconi, G., & Naik, T. R. (2016). Structural concrete made with recycled aggregates for sustainable concrete design [Paper presentation]. Proceedings of the Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas. http://www.claisse.info/Proceedings.htm https://doi.org/10.18552/2016/SCMT4S138
  • Otsuki, N., Miyazato, S., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)
  • Padmini, A. K., Ramamurthy, K., & Mathews, M. S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23(2), 829–836. https://doi.org/10.1016/j.conbuildmat.2008.03.006
  • Pedro, D., de Brito, J., & Evangelista, L. (2014). Influence of the use of recycled concrete aggregates from different sources on structural concrete. Construction and Building Materials, 71, 141–151. https://doi.org/10.1016/j.conbuildmat.2014.08.030
  • Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of hardened concrete. Cement and Concrete Research, 34(1), 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8
  • RILEM. (2000). B-TC 106-3 – Detection of potential alkali-reactivity of aggregates – Method for aggregate combinations using concrete prisms. RILEM AAR-3. Materials and Structures, 33(2000), 290–293. https://doi.org/10.1007/BF02479698
  • Sánchez de Juan, M., & Gutiérrez, P. A. (2009). Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Construction and Building Materials, 23(2), 872–877. https://doi.org/10.1016/j.conbuildmat.2008.04.012
  • Shehata, M. H., Christidis, C., Mikhaiel, W., Rogers, C., & Lachemi, M. (2010). Reactivity of reclaimed concrete aggregate produced from concrete affected by alkali–silica reaction. Cement and Concrete Research, 40(4), 575–582. https://doi.org/10.1016/j.cemconres.2009.08.008
  • Soares, D., de Brito, J., Ferreira, J., & Pacheco, J. (2014). Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance. Construction and Building Materials, 71, 263–272. https://doi.org/10.1016/j.conbuildmat.2014.08.034
  • Sota, J., Falcone, D., & Batic, O. (2005). Efecto de las armaduras em el control de tensiones de tracción generadas por la RAS [Paper presentation]. Jornadas SAM/CONAMET 2005 – MEMAT 2005, Mar del Plata, Argentina.
  • Sota, J., Falcone, D., & Batic, O. (2006). Hormigones con agregados de hormigón reciclado afectado por RAS. In Proc., Memorias 16° Reunión Técnica de la AATH (pp. 7–13). Argentina Association of Concrete Technology.
  • Tabsh, S. W., & Abdelfatah, A. S. (2009). Influence of recycled concrete aggregates on strength properties of concrete. Construction and Building Materials, 23(2), 1163–1167. https://doi.org/10.1016/j.conbuildmat.2008.06.007
  • UNE. (2011). Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes. UNE-EN 197, AENOR.
  • Villagrán-Zaccardi, Y. A., Zega, C. J., & Di Maio, A. A. (2008). Chloride penetration and binding in recycled concrete. Journal of Materials in Civil Engineering, 20(6), 449–455. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:6(449)
  • Wagner, S., Wickizer, G., Cleary, D., Lomboy, G. R., Kennedy, D., Watts, B., & Bly, P. (2020). Use of coarse recycled concrete aggregate in ternary blended Portland cement concrete. Transportation Research Record: Journal of the Transportation Research Board, 2674(10), 705–714. https://doi.org/10.1177/0361198120935876
  • WBTC. (2002). Specifications facilitating the use of recycled aggregates. WBTC N.12/2002. WBTC.
  • Xiao, J., Li, W., & Poon, C. (2012). Recent studies on mechanical properties of recycled aggregate concrete in China—A review. Science China Technological Sciences, 55(6), 1463–1480. https://doi.org/10.1007/s11431-012-4786-9
  • Zega, C. J., Coelho dos Santos, G. S., Villagrán-Zaccardi, Y. A., & Di Maio, A. A. (2016). Performance of recycled concretes exposed to sulphate soil for 10 years. Construction and Building Materials, 102, 714–721. https://doi.org/10.1016/j.conbuildmat.2015.11.025
  • Zega, C. J., & Di Maio, A. A. (2009). Recycled concrete made with different natural coarse aggregates exposed to high temperature. Construction and Building Materials, 23(5), 2047–2052. https://doi.org/10.1016/j.conbuildmat.2008.08.017
  • Zega, C. J., Villagrán-Zaccardi, Y. A., & Di Maio, A. A. (2010). Effect of natural coarse aggregate type on the physical and mechanical properties of recycled coarse aggregates. Materials and Structures, 43(1–2), 195–202. https://doi.org/10.1617/s11527-009-9480-4
  • Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. https://doi.org/10.1016/j.conbuildmat.2019.03.078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.