203
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of suffusion in heterogeneous soils using discrete element method

, , , &
Pages 611-633 | Received 20 Oct 2022, Accepted 25 May 2023, Published online: 06 Jun 2023

References

  • Aboul Hosn, R., Benahmed, N., Nguyen, C. D., Sibille, L., Philippe, P., & Chareyre, B. (2019). Effects of suffusion on the soil’s mechanical behavior: Experimental investigations. In Internal erosion in earthdams, dikes and levees (pp. 3–15). Springer. https://doi.org/10.1007/978-3-319-99423-9_1
  • Aboul Hosn, R., Sibille, L., Benahmed, N., & Chareyre, B. (2018). A discrete numerical model involving partial fluid-solid coupling to describe suffusion effects in soils. Computers and Geotechnics, 95, 30–39. https://doi.org/10.1016/j.compgeo.2017.11.006
  • Achmus, M., & Abdel-Rahman, K. (2003). The influence of “up-scaling” on the results of particle method calculations of non-cohesive soils. In Numerical modelling in micromechanics via particle methods. Routledge.
  • Benamar, A., Correia dos Santos, R. N., Bennabi, A., & Karoui, T. (2019). Suffusion evaluation of coarse-graded soils from Rhine dikes. Acta Geotechnica, 14(3), 815–823. https://doi.org/10.1007/s11440-019-00782-1
  • Bendahmane, F., Marot, D., & Alexis, A. (2008). Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1), 57–67. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(57)
  • Bender, E. (1981). Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90. Chemie Ingenieur Technik. 53(3), 225–225. https://doi.org/10.1002/cite.330530323
  • Bi, J., Luo, X., & Shen, H. (2021). Modelling of suffusion considering the influence of soil gradation. Transport in Porous Media, 136(3), 765–790. https://doi.org/10.1007/s11242-020-01534-6
  • Bui, T.-A., Gelet, R., & Marot, D. (2019). Modelling of internal erosion based on mixture theory: General framework and a case study of soil suffusion. International Journal for Numerical and Analytical Methods in Geomechanics, 43(15), 2407–2430. https://doi.org/10.1002/nag.2981
  • Catalano, E., Chareyre, B., & Barthélémy, E. (2014). Pore-scale modelling of fluid-particles interaction and emerging poromechanical effects. International Journal for Numerical and Analytical Methods in Geomechanics, 38(1), 51–71. https://doi.org/10.1002/nag.2198
  • Chang, D. (2012). Internal erosion and overtopping erosion of earth dams and landslide dams.
  • Chareyre, B., Cortis, A., Catalano, E., & Barthélemy, E. (2012). Pore-scale modelling of viscous flow and induced forces in dense sphere packings. Transport in Porous Media, 94(2), 595–615. https://doi.org/10.1007/s11242-012-0057-2
  • Cheng, K., Wang, Y., & Yang, Q. août (2018). A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Computers and Geotechnics, 100, 30–51. https://doi.org/10.1016/j.compgeo.2018.04.004
  • Cheng, K., Zhang, C., Peng, K., Liu, H., & Ahmad, M. mars (2021). Un-resolved CFD-DEM method: An insight into its limitations in the modelling of suffusion in gap-graded soils. Powder Technology. 381, 520–538. https://doi.org/10.1016/j.powtec.2020.12.034
  • Chetti, A., Benamar, A., & Hazzab, A. (2016). Modeling of particle migration in porous media: Application to soil suffusion. Transport in Porous Media, 113(3), 591–606. https://doi.org/10.1007/s11242-016-0714-y
  • Chetti, A., Benamar, A., & Korichi, K. (2021). Three-dimensional numerical model of internal erosion. European Journal of Environmental and Civil Engineering, 25(9), 1539–1554. https://doi.org/10.1080/19648189.2019.1585296
  • Cividini, A., & Gioda, G. (2004). Finite-element approach to the erosion and transport of fine particles in granular soils. International Journal of Geomechanics, 4(3), 191–198. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(191)
  • Cui, Y., Nouri, A., Chan, D., & Rahmati, E. (2016). A new approach to DEM simulation of sand production. Journal of Petroleum Science and Engineering, 147, 56–67. https://doi.org/10.1016/j.petrol.2016.05.007
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
  • Dasaka, S. M., & Zhang, L. M. (2012). Spatial variability of in situ weathered soil. Géotechnique, 62(5), 375–384. https://doi.org/10.1680/geot.8.P.151.3786
  • Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48, 89–94.
  • Fan, M., McClure, J., Han, Y., Li, Z., & Chen, C. (2018). Interaction between proppant compaction and single-/multiphase flows in a hydraulic fracture. SPE Journal, 23(4), 1290–1303. https://doi.org/10.2118/189985-PA
  • Fan, M., McClure, J., Han, Y., Ripepi, N., Westman, E., Gu, M., & Chen, C. mai (2019). Using an experiment/simulation-integrated approach to investigate fracture-conductivity evolution and non-darcy flow in a proppant-supported hydraulic fracture. SPE Journal, 24(4), 1912–1928. https://doi.org/10.2118/195588-PA
  • Fell, R., & Fry, J.-J. (Ed.) (2014). Internal erosion of dams and their foundations: Selected and reviewed papers from the Workshop on Internal Erosion and Piping of Dams and their Foundations, Aussois, France, 25–27 April 2005. CRC Press. https://doi.org/10.1201/9781482266146
  • Fell, R., MacGregor, P., Stapledon, D., & Bell, G. (2005). Geotechnical engineering of dams. CRC Press. https://doi.org/10.1201/NOE0415364409
  • Hama, N. A., Ouahbi, T., Taibi, S., Souli, H., Fleureau, J. M., & Pantet, A. (2016). Analysis of mechanical behaviour and internal stability of granular materials using discrete element method. International Journal for Numerical and Analytical Methods in Geomechanics, 40(12), 1712–1729. https://doi.org/10.1002/nag.2510
  • Hama, N. A., Ouahbi, T., Taibi, S., Souli, H., Fleureau, J.-M., & Pantet, A. (2019). Relationships between the internal erosion parameters and the mechanical properties of granular materials. European Journal of Environmental and Civil Engineering, 23(11), 1368–1380. https://doi.org/10.1080/19648189.2017.1347526
  • Holmes, D. W., Williams, J. R., & Tilke, P. (2011). Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 35(4), 419–437. https://doi.org/10.1002/nag.898
  • Huang, Q., Zhan, M., Sheng, J., Luo, Y., & Su, B. (2014). Investigation of fluid flow-induced particle migration in granular filters using a DEM-CFD method. Journal of Hydrodynamics, 26(3), 406–415. https://doi.org/10.1016/S1001-6058(14)60046-9
  • Hu, Z., Zhang, Y., & Yang, Z. (2019). Suffusion-induced deformation and microstructural change of granular soils: A coupled CFD–DEM study. Acta Geotechnica, 14(3), 795–814. https://doi.org/10.1007/s11440-019-00789-8
  • Hu, Z., Zhang, Y., & Yang, Z. (2020). Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD-DEM. Journal of Geotechnical and Geoenvironmental Engineering, 146(5), 04020024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002245
  • Israr, J., & Indraratna, B. (2017). Internal stability of granular filters under static and cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001661
  • Kawano, K., Shire, T., & O’Sullivan, C. (2018). Coupled particle-fluid simulations of the initiation of suffusion. Soils Found, 58(4), 972–985. https://doi.org/10.1016/j.sandf.2018.05.008
  • Kenney, T. C., & Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22(2), 215–225. https://doi.org/10.1139/t85-029
  • Ke, L., & Takahashi, A. (2014). Triaxial erosion test for evaluation of mechanical consequences of internal erosion. Geotechnical Testing Journal, 37(2), 20130049. https://doi.org/10.1520/GTJ20130049
  • Ke, L., & Takahashi, A. (2015). Drained monotonic responses of suffusional cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, 141(8), 04015033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001327
  • Lominé, F., Scholtès, L., Sibille, L., & Poullain, P. (2013). Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: Application to piping erosion. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6), 577–596. https://doi.org/10.1002/nag.1109
  • Luo, Y., & Huang, Y. (2020). Effect of open-framework gravel on suffusion in sandy gravel alluvium. Acta Geotechnica, 15(9), 2649–2664. https://doi.org/10.1007/s11440-020-00933-9
  • Luo, Y., Zhang, X., & Xiao, M. (2020). Influence of constriction-based retention ratio on suffusion in double-layered alluvial foundation with a cutoff wall. Soils Found, 60(6), 1489–1506. https://doi.org/10.1016/j.sandf.2020.10.002
  • Martínez-Moreno, F. J., Delgado-Ramos, F., Galindo-Zaldívar, J., Martín-Rosales, W., López-Chicano, M., & González-Castillo, L. (2018). Identification of leakage and potential areas for internal erosion combining ERT and IP techniques at the Negratín Dam left abutment (Granada, southern Spain). Engineering Geology, 240, 74–80. https://doi.org/10.1016/j.enggeo.2018.04.012
  • Mcdowell, G. R., De Bono, J. P., Yue, P., & Yu, H.-S. (2013). Micro mechanics of isotropic normal compression. Géotechnique Letters, 3(4), 166–172. https://doi.org/10.1680/geolett.13.00050
  • Mercier, F., Bonelli, S., Golay, F., Anselmet, F., Philippe, P., & Borghi, R. (2015). Numerical modelling of concentrated leak erosion during Hole Erosion Tests. Acta Geotechnica, 10(3), 319–332. https://doi.org/10.1007/s11440-014-0349-5
  • Mindlin, R. D., & Deresiewicz, H. (1953). Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20(3), 327–344. https://doi.org/10.1115/1.4010702
  • Moffat, R. M., & Fannin, R. J. F. J. (2011). A hydromechanical relation governing internal stability of cohesionless soil. Canadian Geotechnical Journal, 48(3), 413–424. https://doi.org/10.1139/T10-070
  • Nguyen, C. D., Benahmed, N., Andò, E., Sibille, L., & Philippe, P. (2019). Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotechnica, 14(3), 749–765. https://doi.org/10.1007/s11440-019-00787-w
  • Oueidat, M., Benamar, A., & Bennabi, A. (2021). Effect of fine particles and soil heterogeneity on the initiation of suffusion. Geotechnical and Geological Engineering, 39(3), 2359–2371. https://doi.org/10.1007/s10706-020-01632-8
  • Pachideh, V., & Hosseini, S. M. M. M. (2019). A new physical model for studying flow direction and other influencing parameters on the internal erosion of soils. Geotechnical Testing Journal, 42(6), 20170301. https://doi.org/10.1520/GTJ20170301
  • Papamichos, E. (2010). Erosion and multiphase flow in porous media. European Journal of Environmental and Civil Engineering, 14(8–9), 1129–1154. https://doi.org/10.1080/19648189.2010.9693284
  • Rousseau, Q., Sciarra, G., Gelet, R., & Marot, D. (2020). Modelling the poroelastoplastic behaviour of soils subjected to internal erosion by suffusion. International Journal for Numerical and Analytical Methods in Geomechanics, 44(1), 117–136. https://doi.org/10.1002/nag.3014
  • Sail, Y., Marot, D., Sibille, L., & Alexis, A. (2011). Suffusion tests on cohesionless granular matter. European Journal of Environmental and Civil Engineering, 15(5), 799–817. https://doi.org/10.1080/19648189.2011.9693366
  • Salari, M., Akhtarpour, A., & Ekramifard, A. (2021). Hydraulic fracturing: A main cause of initiating internal erosion in a high earth-rock fill dam. International Journal of Geotechnical Engineering, 15(2), 207–219. https://doi.org/10.1080/19386362.2018.1500122
  • Scholtès, L., Hicher, P.-Y., & Sibille, L. (2010). Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique, 338(10–11), 627–638. https://doi.org/10.1016/j.crme.2010.10.003
  • Skempton, A. W., & Brogan, J. M. (1994). Experiments on piping in sandy gravels. Géotechnique, 44(3), 449–460. https://doi.org/10.1680/geot.1994.44.3.449
  • Taylor, H. F., O’Sullivan, C., & Sim, W. W. (2016). Geometric and hydraulic void constrictions in granular media. Journal of Geotechnical and Geoenvironmental Engineering, 142(11), 04016057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001547
  • Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 71(3), 239–250. https://doi.org/10.1016/0032-5910(92)88030-L
  • Ul Haq, I., & Haq, I. U. (1996). Tarbela dam: Resolution of seepage. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 119(1), 49–56. https://doi.org/10.1680/igeng.1996.28135
  • Vanmarcke, E. (1977). Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division, 103(11), 1227–1246. https://doi.org/10.1061/AJGEB6.0000517
  • Vardoulakis, I., Papanastasiou, P., & Stavropoulou, M. (2001). Sand erosion in axial flow conditions. Transport in Porous Media, 45(2), 267–280. https://doi.org/10.1023/A:1012035031463
  • Volk, A., Ghia, U., & Stoltz, C. (2017). Effect of grid type and refinement method on CFD-DEM solution trend with grid size. Powder Technology, 311, 137–146. https://doi.org/10.1016/j.powtec.2017.01.088
  • Wan, C. F., & Fell, R. (2004). Investigation of rate of erosion of soils in Embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 373–380. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
  • Wan, C. F., & Fell, R. (2008). Assessing the potential of internal instability and suffusion in Embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 401–407. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401)
  • Wautier, A., Bonelli, S., & Nicot, F. (2017). « Scale separation between grain detachment and grain transport in granular media subjected to an internal flow. Granular Matter, 19(2), 22. https://doi.org/10.1007/s10035-017-0706-9
  • Xiong, H., Yin, Z.-Y., Zhao, J., & Yang, Y. (2021). Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils. Acta Geotechnica, 16(2), 399–419. https://doi.org/10.1007/s11440-020-01012-9
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2020). Hydromechanical modeling of granular soils considering internal erosion. Canadian Geotechnical Journal, 57(2), 157–172. https://doi.org/10.1139/cgj-2018-0653
  • Zhang, A., Jiang, M., & Thornton, C. (2020). A coupled CFD-DEM method with moving mesh for simulating undrained triaxial tests on granular soils. Granular Matter, 22(1), 13. https://doi.org/10.1007/s10035-019-0984-5
  • Zhou, Z. Y., Kuang, S. B., Chu, K. W., & Yu, A. B. (2010). Discrete particle simulation of particle–fluid flow: Model formulations and their applicability. Journal of Fluid Mechanics, 661, 482–510. https://doi.org/10.1017/S002211201000306X
  • Zhou, S., Zhang, X., Wu, D., & Di, H. août (2018). Mathematical modeling of slurry infiltration and particle dispersion in saturated sand. Transport in Porous Media, 124(1), 91–116. https://doi.org/10.1007/s11242-018-1054-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.