180
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of rice husk ash as partial replacement of ordinary Portland cement in ultra-high-performance glass concrete

ORCID Icon
Pages 661-683 | Received 01 Mar 2021, Accepted 23 May 2023, Published online: 01 Jun 2023

References

  • Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271–295. https://doi.org/10.1007/s40069-016-0157-4
  • Abdulkareem, O. M., Ben Fraj, A., Bouasker, M., & Khelidj, A. (2018). Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC. Construction and Building Materials, 169, 567–577. https://doi.org/10.1016/j.conbuildmat.2018.02.214
  • Abellan, J., Torres, N., Núñez, A., & Fernández, J. (2018). Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones [Paper presentation]. IV Congr. Int. Ing. Civ., Havana, Cuba.
  • Abellan-Garcia, J., Santofimo-Vargas, M. A., & Torres-Castellanos, N. (2020). Analysis of metakaolin as partial substitution of ordinary Portland cement in Reactive Powder Concrete. Advances in Civil Engineering Materials, 9, 368–386. https://doi.org/10.1520/ACEM20190224
  • Abellan, J., Torres, N., Núñez, A., & Fernández, J. (2018). Ultra high preformance fiber reinforced concrete: State of the art, applications and possibilities into the Latin American market [Paper presentation]. XXXVIII Jornadas Sudam. Ing. Estructural, Lima, Peru.
  • Abellán, J., Fernández, J., Torres, N., & Núñez, A. (2020). Development of cost-efficient UHPC with local materials in Colombia. In: B. Middendorf, E. Fehling, A. Wetzel (Eds.), Proceedings of Hipermat 2020. 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials. Universidad Politécnica de Madrid. pp. 97–98.
  • Abellán, J., Fernández, J., Torres, N., & Núñez, A. (2020). Statistical optimization of ultra-high-performance glass concrete. ACI Materials Journal, 117(1), 243–254. https://doi.org/10.14359/51720292
  • Abellán-Garcia, J., Sánchez-Díaz, J., & Ospina-Becerra, V. (2021). Neural network-based optimization of fibers for seismic retrofitting applications of UHPFRC. European Journal of Environmental and Civil Engineering. 26(13), 6305–6333. https://doi.org/10.1080/19648189.2021.1938687
  • Abellán-García, J. (2020). Comparison of artificial intelligence and multivariate regression in modeling the flexural behavior of UHPFRC. DYNA, 87, 239–248. http://doi.org/10.15446/dyna.v87n214.86172.
  • Abellán-García, J. (2020). Dosage optimization and seismic retrofitting applications of Ultra-HighPerformance Fiber Reinforced Concrete (UHPFRC). Doctoral dissertation. Universidad Politécnica de Madrid.
  • Abellán-García, J. (2020). Four-layer perceptron approach for strength prediction of UHPC. Construction and Building Materials, 256, 119465. https://doi.org/10.1016/j.conbuildmat.2020.119465
  • Abellán-García, J. (2021). Artificial Neural Network Model for Strength Prediction of Ultra-High-Performance Concrete. ACI Materials Journal, 118, 1–12. https://doi.org/10.14359/51732710
  • Abellán-García, J. (2021). K-fold validation neural network approach for predicting the one-day compressive strength of UHPC. Advances in Civil Engineering Materials, 10(1), 20200055. https://doi.org/10.1520/ACEM20200055
  • Abellán-García, J., Fernández-Gómez, J., & Torres-Castellanos, N. (2020). Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks. European Journal of Environmental and Civil Engineering, 0, 1–25. https://doi.org/10.1080/19648189.2020.1762749
  • Abellán-García, J., Fernández-Gómez, J. A., Torres-Castellanos, N., & Núñez-López, A. M. (2020). Machine learning prediction of flexural behavior of UHPFRC. In P. Serna, A. Llano-Torre, J.R. Martí-Vargas, J. Navarro-Gregori (Eds.), Fibre Reinforced Concrete: Improvements and Innovations, RILEM-fib International Symposium on FRC. BEFIB 2020 (pp. 570–583). RILEM Bookseries. https://doi.org/10.1007/978-3-030-58482-5_52
  • Abellán-García, J., Fernández-Gómez, J., Torres-Castellanos, N., & Núñez-López, A. (2021). Tensile behavior of normal strength steel fiber green UHPFRC. ACI Materials Journal, 118, 127–138. https://doi.org/10.14359/51725992
  • Abellán-García, J., & Guzmán-Guzmán, J. S. (2021). Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications. Construction and Building Materials, 285, 122869. https://doi.org/10.1016/j.conbuildmat.2021
  • Abellán-García, J., Guzmán-Guzmán, J. S., Sánchez-Díaz, J. A., & Rojas-Grillo, J. (2021). Experimental validation of artificial intelligence model for the energy absorption capacity of UHPFRC. DYNA, 88, 150–159. https://doi.org/10.15446/dyna.v88n217.
  • Abellán-García, J., Nuñez-Lopez, A., & Arango-Campo, S. (2020). Pedestrian bridge over Las Vegas Avenue in Medellín. First Latin American Infrastructure in UHPFRC. In P. Serna, A. Llano-Torre, J.R. Martí-Vargas, J. Navarro-Gregori (Eds.), BEFIB 2020, RILEM Bookseries, pp. 864–872. https://doi.org/10.1007/978-3-030-58482-5_76.
  • Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., & Fernández-Gómez, J. (2020). Factorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder. DYNA, 87, 42–51. http://doi.org/10.15446/dyna.v87n213.82655.
  • Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., & Fernández-Gómez, J. (2019). Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass. DYNA, 86, 84–92. https://doi.org/10.15446/dyna.v86n211.79596
  • Abellán-García, J., Torres-Castellanos, N., Fernández-Gómez, J. A., & Núñez-López, A. M. (2021). Ultra-high-performance concrete with local high unburned carbon fly ash. DYNA, 88, 38–47. http://doi.org/10.15446/dyna.v88n216.89234.
  • Abellán, J., Núñez, A., & Arango, S. (2020). Pedestrian bridge of UNAL in Manizales : A new UPHFRC application in the Colombian building market [Paper presentation]. ProcProceedings of Hipermat 2020. 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials, Kassel University, Germany. pp. 43–44.
  • ACI Committe 239R. (2018). ACI—239 Committee in Ultra-High Performance Concrete, ACI.
  • ACI Committe 239R. (2018). Ultra-high-performance concrete: An emerging technology report. American Concrete Institute, Emerging technology series, ISBN 164195034X, 9781641950343, 21 pages
  • Acker, P., & Behloul, M. (2004). Ductal Technology: A Large Spectrum of Properties, a wide range of applications. in: M.S.E.F.C.G.S. Fröhlich, S. Piotrowski (Eds.), Proceedings of International Symposium on Ultra-High Performance Concrete, Kassel University. pp. 11–24.
  • Ahmad, S., Hakeem, I., & Maslehuddin, M. (2014). Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand. European Journal of Environmental and Civil Engineering, 2014, 1–8. https://doi.org/10.1155/2014/713531
  • ASTM, ASTM C1437. (2020). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials C-1437, West Conshohocken,1–2. https://doi.org/10.1520/C1437-20
  • ASTM. (2010). ASTM C 618: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Annual Book of ASTM Standards, Volume 4.01, Cement; Lime; Gypsum, Annual B. ASTM Standard. 3–6. https://doi.org/10.1520/C0618
  • ASTM. (2010). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens). American Society for Testing and Materials C-109/109M, West Conshohocken, 1–9. https://doi.org/10.1520/C0109
  • Bache, H. H. (1981). Densified cement/ultra fine particle based materials [Paper presentation]. Second International Conference on SUPERPLAST Concrete, Ottawa (Canada).
  • Behnood, A., & Ziari, H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement and Concrete Composites, 30(2), 106–112. https://doi.org/10.1016/j.cemconcomp.2007.06.003
  • Bharath, K. N., Manjunatha, G. B., & Santhosh, K. (2019). 5—Failure analysis and the optimal toughness design of sheep–wool reinforced epoxy composites. In M. Jawaid, M. Thariq, N. Saba (Eds.), Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 97–107. https://doi.org/10.1016/B978-0-08-102293-1.00005-X.
  • Birchall, J. D., Howard, A. J., & Kendall, K. (1981). Flexural strength and porosity of cement. Nature, 289(5796), 388–390. https://doi.org/10.1038/289388a0
  • Camacho, E., López, J. Á., & Serna, P. (2012). Definition of three levels of performance for UHPFRC-VHPFRC with available materials, in Proceedings of Hipermat 2012. In M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, S. Piotrowski (Eds.), 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel University. pp. 249–256.
  • Camacho Torregrosa, E. (2013). Dosage optimization and bolted connections for UHPFRC ties. Polytechnic University of Valencia.
  • Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete, Science, Technology, and Applications.
  • Cheyrezy, M., Maret, V., & Frouin, L. (1995). Microstructural analysis of RPC (Reactive Powder Concrete). Cement and Concrete Research, 25(7), 1491–1500. https://doi.org/10.1016/0008-8846(95)00143-Z
  • De Larrard, F. (1999). Concrete mixture proportioning: A scientific approach. In Mod. Concr. Technol. Ser., E&FN SPON.
  • De Larrard, F., & Sedran, T. (2002). Mixture-proportioning of high-performance concrete. Cement and Concrete Research, 32(11), 1699–1704. https://doi.org/10.1016/S0008-8846(02)00861-X
  • Ferdosian, I., Camões, A., & Ribeiro, M. (2017). High-volume fly ash paste for developing ultra-high performance concrete (UHPC). Ciência & Tecnologia dos Materiais, 29(1), e157–e161. https://doi.org/10.1016/j.ctmat.2016.10.001
  • Funk, J. E. J. E., & Dinger, D. R. (1994). Predictive process control of crowded particulate suspensions: Applied to Ceramic Manufacturing. Springer Science. https://doi.org/10.1007/978-1-4615-3118-0
  • Ghafari, E., Costa, H., Júlio, E., Portugal, A., & Durães, L. (2012). Enhanced durability of ultra high performance concrete by incorporating supplementary cementitious materials [Paper presentation]. 2nd International Conference on Microstructure Related Durability of Cementitious Composites. 11–13.
  • Ghafari, E., Costa, H., Nuno, E., & Santos, B. (2014). RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers. Construction and Building Materials, 66, 375–383. https://doi.org/10.1016/j.conbuildmat.2014.05.064
  • Ghafari, E., Costa, H., Nuno, E., Santos, B., Costa, H., & Júlio, E. (2015). Critical review on eco-efficient ultra high performance concrete enhanced with nano- materials. Construction and Building Materials, 101, 201–208. https://doi.org/10.1016/j.conbuildmat.2015.10.066
  • Ghafoori, N., Spitek, R., & Najimi, M. (2016). Influence of limestone size and content on transport properties of self-consolidating concrete. Construction and Building Materials, 127, 588–595. https://doi.org/10.1016/j.conbuildmat.2016.10.051
  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials, 24(11), 2145–2150. https://doi.org/10.1016/j.conbuildmat.2010.04.045
  • Ha Thanh, L., Siewert, K., & Ludwig, H.-M. (2012). Synergistic effect of rice husk ash and fly ash on properties of self-compacting high performance concrete. In 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel University. pp. 187–196.
  • Habeeb, G. A., & Bin Mahmud, H. (2011). Study on properties of rice husk ash and its use as cement replacement material. 85–190.
  • Habel, K., Charron, J.-P., Braike, S., Hooton, R. D., Gauvreau, P., & Massicotte, B. (2008). Ultra-high performance fibre reinforced concrete mix design in central Canada. Canadian Journal of Civil Engineering, 35(2), 217–224. https://doi.org/10.1139/L07-114
  • Haber, Z. B., Munoz, J. F., & Graybeal, B. A. (2017). Field testing of an ultra-high performance concrete overlay.
  • Heikal, M., Morsy, M. S., & Aiad, I. (2006). Effect of polycarboxylate superplasticizer on hydration characteristics of cement pastes containing silica fume. Journal Ceramics-Silikáty, 50, 5–14.
  • Huang, H., Gao, X., Wang, H., & Ye, H. (2017). Influence of rice husk ash on strength and permeability of ultra-high performance concrete. Construction and Building Materials, 149, 621–628. https://doi.org/10.1016/j.conbuildmat.2017.05.155
  • IEA. (2020). Global cement production, 2010–2019, Iea.Org. https://www.iea.org/data-and-statistics/charts/global-cement-production-2010-2019.
  • Kalny, M., Kvasnicka, V., & Komanec, J. (2016). First practical applications of UHPC in the Czech Republic. In E. Fehling, B. Middendorf, J. Thiemicke (Eds.), Proceedings of HiPerMat 2016 4th International Symposium on UHPC Nanotechnology Construction Materials, pp. 147–148.
  • Korpa, A., Kowald, T., & Trettin, R. (2014). Principles of development, phase composition and nanostructural features of multiscale ultra high performance concrete modified with pyrogenic nanoparticles—A review article. American Journal of Materials Science and Application, 2, 17–30.
  • Kubens, S. (2010). “Interaction of cement and admixtures and its influence on rheological properties,” Göttingen, Germany, https://cuvillier.de/de/shop/publications/752%0ACopyright:
  • Larrard, F. (1994). Optimization of ultra-high performance concrete by the use of a packing model. Cement and Concrete Research, 24, 997–1009.
  • Lenth, R. V. (2009). Response-surface methods in R, using rsm. Journal of Statistical Software, 32(7), 1–17. https://doi.org/10.18637/jss.v032.i07
  • Li, W., Asce, M., Huang, Z., Zu, T., Shi, C., Duan, W. H., Shah, S. P., & Asce, M. (2016). Influence of nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete. Journal of Materials in Civil Engineering, 28(1), 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001327
  • Mahmud, H. B., Bahri, S., Yee, Y. W., & Yeap, Y. T. (2016). Effect of rice husk ash on strength and durability of high strength high performance concrete. World Academy of Science, Engineering and Technology, 10(3), 390–395.
  • Maroliya, M. K. (2012). Tensile behavior of reactive powder concrete containing steel fibres and silica fume. International Journal of Engineering Research and Development, 4, 58–61.
  • Martin-Sanz, H., Chatzi, E., & Brühwiler, E. (2016). The use of Ultra High Performance Fibre Reinforced cement-based Composites in rehabilitation projects: A review. In: V. Saouma, J. Bolander, E. Landis (Eds.), 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, https://doi.org/10.21012/fc9.219
  • Mattey, P. E., Robayo, R. A., Diaz, J. E., Delvasto, S., & Monzó, J. (2015). Applications of rice husk ash obtained from agro-industrial process for the manufacture of nonstructural concrete blocks. Revista Latinoamericana de Metalurgia y Materiales, 35, 285–294.
  • Meng, W., Samaranayake, V. A., & Khayat, K. H. (2018). Factorial design and optimization of UHPC with lightweight sand. ACI Materials Journal, 345, 327–335. https://doi.org/10.14359/51700995
  • Mishra, O., & Singh, S. P. (2019). An overview of microstructural and material properties of ultra-high-performance concrete. Journal of Sustainable Cement-Based Materials, 8(2), 97–143. https://doi.org/10.1080/21650373.2018.1564398
  • Mosaberpanah, M. A., & Eren, O. (2017). Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modeling. Adv. Concr. Constr, 5, 481–492. https://doi.org/10.12989/acc.2017.5.5.481
  • Neira, A. (2020). Efecto de la mezcla de micro-fibras y macro-fibras poliméricas en el comportamiento a flexión y compresión del UHPFRC, Master degree dissertation, Escuela Colombiana de Ingeniería Julio Garavito.
  • Neira-Medina, A., Abellan-Garcia, J., & Torres-Castellanos, N. (2021). Flexural behavior of environmentally friendly ultra-high-performance concrete with locally available low-cost synthetic fibers. European Journal of Environmental and Civil Engineering, 26(13), 1–20. https://doi.org/10.1080/19648189.2021.1938686
  • Puertas, F., Santos, H., Palacios, M., & Martínez-Ramírez, S. (2005). Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behaviour in cement pastes. Advances in Cement Research, 17(2), 77–89. https://doi.org/10.1680/adcr.17.2.77.65044
  • Pyo, S., El-Tawil, S., & Naaman, A. E. (2016). Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cement and Concrete Research, 88, 144–156. https://doi.org/10.1016/j.cemconres.2016.07.003
  • R Core Team. (2018). R: A Language and Environment for Statistical Computing. https://www.r-project.org/.
  • Raviselvan, R. J., Ramanathan, K., Perumal, P., & Thansekhar, M. R. (2015). Response surface methodology for optimum hardness of TiN on steel substrate. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 9, 1331–1337.
  • Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2
  • Roth, T. (2016). “Working with the qualityTools package, 35. http://www.r-qualitytools.org.
  • Schmidt, C., & Schmidt, M. (2012). Whitetopping of Asphalt and Concrete Pavements with thin layers of Ultra-High-Performance Concrete—Construction and economic efficiency [Paper presentation]. Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany.
  • Schmidt, C., & Schmidt, M. (2012). Whitetopping’ of Asphalt and concrete pavements with thin layers of ultra-high-performance concrete—Construction and economic efficiency. M.S.E.F.C.G.S. Fröhlich, S. Piotrowski (Eds.), 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel University. pp. 921–927. ISBN online: 978-3-86219-264-9.
  • Šerelis, E., Vaitkevičius, V., & Kerševičius, V. (2016). Mechanical properties and microstructural investigation of ultra-high performance glass powder concrete. Journal of Sustainable Architecture and Civil Engineering, 1, 5–11. https://doi.org/10.5755/j01.sace.14.1.14478
  • Shaaban, M., & Ahmed, S. (2016). Development of ultra-high performance concrete jointed precast decks and concrete piles in Integral Abutment Bridges [Paper presentation]. First Int. Symp. Jointless Sustain. Bridg, Fuzhou, Fujian, China. https://www.academia.edu/25363851/DEVELOPMENT_OF_ULTRA-HIGH_PERFORMANCE_CONCRETE_FOR_JOINTED_PRECAST_DECKS_AND_CONCRETE_PILES_IN_INTEGRAL_ABUTMENT_BRIDGES.
  • Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  • Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015). A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368–377. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  • Soliman, N. A., & Tagnit-Hamou, A. (2017). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374–383. https://doi.org/10.1016/j.conbuildmat.2017.02.084
  • Soliman, N. A., & Tagnit-Hamou, A. (2017). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243–252. https://doi.org/10.1016/j.conbuildmat.2017.03.187
  • Soliman, N. A., & Tagnit-Hamou, A. (2017). Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete. ACI Materials Journal, 114(6), 847–858. https://doi.org/10.14359/51701001
  • Song, J., & Liu, S. (2016). Properties of reactive powder concrete and its application in highway bridge. Advances in Materials Science and Engineering. 2016, 1–7. https://doi.org/10.1155/2016/5460241
  • Tagnit-Hamou, A., Soliman, N. A., & Omran, A. (2016). Green ultra-high-performance glass concrete. First International Interactive Symposium on UHPC–2016, 3, 1–10.
  • Tangchirapat, W., Buranasing, R., Jaturapitakkul, C., & Chindaprasirt, P. (2008). Influence of rice husk-bark ash on mechanical properties of concrete containing high amount of recycled aggregates. Construction and Building Materials, 22(8), 1812–1819. https://doi.org/10.1016/j.conbuildmat.2007.05.004
  • The European Project Group. (2005). The European Guidelines for Self-Compacting Concrete. The European Guidelines for Self-Compacting Concrete, 63 pages.
  • Thien An, V. V., & Ludwig, H.-M. (2012). Proportioning Optimization of UHPC Containing Rice Husk Ash and Ground Granulated Blast-furnace Slag [Paper presentation]. Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel University, Germany. pp. 197–205.
  • Tuan, N. V., Ye, G., Breugel, K. V., Fraaij, A. L. A., & Danh, B. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030–2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046
  • Vacca, H., Alvarado, Y., Fuentes, J., Ulloa, V., León, M., & Núñez, A. (2019). Mechanical properties of ultra high performance concrete with calcium carbonate as a substitute of cementitious material. 2nd International INTERACT Symposium. UHPC. pp. 1–8.
  • Vaitkevicius, V., Šerelis, E., & Hilbig, H. (2014). The effect of glass powder on the microstructure of ultra high performance concrete. Construction and Building Materials, 68, 102–109. https://doi.org/10.1016/j.conbuildmat.2014.05.101
  • Van, V. T. A., Rößler, C., Bui, D. D., & Ludwig, H. M. (2014). Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete. Cement and Concrete Composites, 53, 270–278. https://doi.org/10.1016/j.cemconcomp.2014.07.015
  • Viet Thein An, V., & Ludwig, H.-M. (2012). Proportioning optimization of UHPC containing rice husk ash and ground granulated blast-furnace slag. In: M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, S. Piotrowski (Eds.), 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel University. pp. 197–205.
  • Viet Thein An, V., & Ludwig, H.-M. (2012). Proportioning optimization of UHPC containing rice husk ash and ground granulated blast-furnace slag, In M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, S. Piotrowski (Eds.), Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel University. pp. 197–205.
  • Wille, K., Kim, D., & Naaman, A. E. (2011). Strain hardening UHP-FRC with low fiber contents. Materials and Structures, 44(3), 583–598. https://doi.org/10.1617/s11527-010-9650-4
  • Yudenfreund, M., Odler, I., & Brunauer, S. (1972). Hardened Portland cement pastes of low porosity I. Materials and experimental methods. Cement and Concrete Research. 2(3), 313–330. https://doi.org/10.1016/0008-8846(72)90073-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.