133
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study of the direct shear characteristics of cement grout under constant normal loading and stiffness boundary conditions

, , , &
Pages 718-735 | Received 26 Apr 2022, Accepted 02 Jun 2023, Published online: 08 Jun 2023

References

  • Akiyama, M., & Kawasaki, S. (2012). Novel grout material comprised of calcium phosphate compounds: In vitro evaluation of crystal precipitation and strength reinforcement. Engineering Geology, 125, 119–128. https://doi.org/10.1016/j.enggeo.2011.11.011
  • Atapour, H., & Moosavi, M. (2014). The influence of shearing velocity on shear behavior of artificial joints. Rock Mechanics and Rock Engineering, 47(5), 1745–1761. https://doi.org/10.1007/s00603-013-0481-9
  • Bandis, S., Lumsden, A., & Barton, N. (1981). Experimental studies of scale effects on the shear behaviour of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(1), 1–21.https://doi.org/10.1016/0148-9062(81)90262-X
  • Bao, H., Xu, X., Lan, H., Zhang, G., Yin, P., Yan, C., & Xu, J. (2020). A new joint morphology parameter considering the effects of micro-slope distribution of joint surface. Engineering Geology, 275, 105734. https://doi.org/10.1016/j.enggeo.2020.105734
  • Barla, G., Barla, M., & Martinotti, M. (2010). Development of a new direct shear testing apparatus. Rock Mechanics and Rock Engineering, 43(1), 117–122. https://doi.org/10.1007/s00603-009-0041-5
  • Benmokrane, B., Chennouf, A., & Mitri, H. S. (1995). Laboratory evaluation of cement-based grouts and grouted rock anchors. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(7), 633–642. https://doi.org/10.1016/0148-9062(95)00021-8
  • Benmokrane, B., Zhang, B., & Chennouf, A. (2000). Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications. Construction and Building Materials, 14(3), 157–170. https://doi.org/10.1016/S0950-0618(00)00017-9
  • Cen, D., Huang, D., & Ren, F. (2017). Shear deformation and strength of the interphase between the soil–rock mixture and the benched bedrock slope surface. Acta Geotechnica, 12(2), 391–413. https://doi.org/10.1007/s11440-016-0468-2
  • Chen, J., Hagan, P. C., & Saydam, S. (2017). Sample diameter effect on bonding capacity of fully grouted cable bolts. Tunnelling and Underground Space Technology, 68, 238–243. https://doi.org/10.1016/j.tust.2017.06.004
  • Chen, J., Hagan, P. C., & Saydam, S. (2018). Shear behaviour of a cement grout tested in the direct shear test. Construction and Building Materials, 166, 271–279. https://doi.org/10.1016/j.conbuildmat.2018.01.151
  • Chen, W.-H., Yu, C.-F., Cheng, H.-C., Tsai, Y-m., & Lu, S.-T. (2013). IMC growth reaction and its effects on solder joint thermal cycling reliability of 3D chip stacking packaging. Microelectronics Reliability, 53(1), 30–40. https://doi.org/10.1016/j.microrel.2012.06.146
  • Domone, P. L., & Thurairatnam, H. (1986). Development of mechanical properties of ordinary Portland and Oilwell B cement grouts. Magazine of Concrete Research, 38(136), 129–138. https://doi.org/10.1680/macr.1986.38.136.129
  • Feldman, R. F., & Beaudoin, J. J. (1976). Microstructure and strength of hydrated cement. Cement and Concrete Research, 6(3), 389–400. https://doi.org/10.1016/0008-8846(76)90102-2
  • GB 175-2007. (2007). Common Portland cement (in Chinese).
  • Goris, J. M. (1991). Laboratory evaluation of cable bolt supports. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 28(6), A373. https://doi.org/10.1016/0148-9062(91)91464-3
  • Han, G., Jing, H., Jiang, Y., Liu, R., & Wu, J. (2020). Effect of cyclic loading on the shear behaviours of both unfilled and infilled rough rock joints under constant normal stiffness conditions. Rock Mechanics and Rock Engineering, 53(1), 31–57. https://doi.org/10.1007/s00603-019-01866-w
  • Harrison, D. M. (2013). The grouting handbook: A step-by-step guide for foundation design and machinery installation. Elsevier.
  • Hong, Z-J., Zuo, J-P., Zhang, Z-S., Liu, C., Liu, L., & Liu, H-Y. (2020). Effects of nano-clay on the mechanical and microstructural properties of cement-based grouting material in sodium chloride solution. Construction and Building Materials, 245, 118420. https://doi.org/10.1016/j.conbuildmat.2020.118420
  • Hutchins, W., Bywater, S., Thompson, A., & Windsor, C. (1990). A versatile grouted cable dowel reinforcing system for rock. The AusIMM Proceedings (pp. 25–29).
  • Hyett, A., Bawden, W. F., & Coulson, A. L. (1993). Physical and mechanical properties of normal Portland cement pertaining to fully grouted cable bolts. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(6), 372.
  • Hyett, A. J., Bawden, W. F., & Reichert, R. D. (1992). The effect of rock mass confinement on the bond strength of fully grouted cable bolts. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(5), 503–524. https://doi.org/10.1016/0148-9062(92)92634-O
  • Indraratna, B., Ngo, N. T., & Rujikiatkamjorn, C. (2011). Behavior of geogrid-reinforced ballast under various levels of fouling. Geotextiles and Geomembranes, 29(3), 313–322. https://doi.org/10.1016/j.geotexmem.2011.01.015
  • Jiang, Y. (2017). Rock joints shearing testing system. In Rock mechanics and engineering Volume 2 (pp. 229–262). CRC Press.
  • Kaiser, P. K., Yazici, S., & Nosé, J. (1992). Effect of stress change on the bond strength of fully grouted cables. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(3), 293–306. https://doi.org/10.1016/0148-9062(92)93662-4
  • Kılıç, A., Yasar, E., & Celik, A. G. (2002). Effect of grout properties on the pull-out load capacity of fully grouted rock bolt. Tunnelling and Underground Space Technology, 17(4), 355–362. https://doi.org/10.1016/S0886-7798(02)00038-X
  • Krizek, R. J., Liao, H. J., & Borden, R. H. (1992). Mechanical properties of microfine cement/sodium silicate grouted sand. Geotechnical Special Publication, 1(30), 688–699.
  • Lee, Y.-K., Park, J.-W., & Song, J.-J. (2014). Model for the shear behavior of rock joints under CNL and CNS conditions. International Journal of Rock Mechanics and Mining Sciences, 70, 252–263. https://doi.org/10.1016/j.ijrmms.2014.05.005
  • Li, B., Bao, R., Wang, Y., Liu, R., & Zhao, C. (2021). Permeability evolution of two-dimensional fracture networks during shear under constant normal stiffness boundary conditions. Rock Mechanics and Rock Engineering, 54(1), 409–428. https://doi.org/10.1007/s00603-020-02273-2
  • Li, W., Ho, S. C. M., Patil, D., & Song, G. (2017). Acoustic emission monitoring and finite element analysis of debonding in fiber-reinforced polymer rebar reinforced concrete. Structural Health Monitoring, 16(6), 674–681. https://doi.org/10.1177/1475921716678922
  • Li, D., Masoumi, H., Saydam, S., & Hagan, P. C. (2017). A constitutive model for load-displacement performance of modified cable bolts. Tunnelling and Underground Space Technology, 68, 95–105. https://doi.org/10.1016/j.tust.2017.05.025
  • Li, H., Xiao, H-g., & Ou, J-p (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 34(3), 435–438. https://doi.org/10.1016/j.cemconres.2003.08.025
  • Li, Z., Zhang, J., Li, S., Gao, Y., Liu, C., & Qi, Y. (2020). Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. Journal of Cleaner Production. 245, 118759. https://doi.org/10.1016/j.jclepro.2019.118759
  • Ma, S. Q., Aziz, N., Nemcik, J., & Mirzaghorbanali, A. (2017). The effects of installation procedure on bond characteristics of fully grouted rock bolts. Geotechnical Testing Journal, 40(5), 20160239. https://doi.org/10.1520/GTJ20160239
  • Ma, G., & Du, Q. (2020). Structural health evaluation of the prestressed concrete using advanced acoustic emission (AE) parameters. Construction and Building Materials, 250, 118860. https://doi.org/10.1016/j.conbuildmat.2020.118860
  • Ma, S., Nemcik, J., & Aziz, N. (2013). An analytical model of fully grouted rock bolts subjected to tensile load. Construction and Building Materials. 49, 519–526. https://doi.org/10.1016/j.conbuildmat.2013.08.084
  • Ma, S., Nemcik, J., & Aziz, N. (2014a). Simulation of fully grouted rockbolts in underground roadways using FLAC2D. Canadian Geotechnical Journal, 51(8), 911–920. https://doi.org/10.1139/cgj-2013-0338
  • Ma, S., Nemcik, J., Aziz, N., & Zhang, Z. (2014b). Analytical model for rock bolts reaching free end slip. Construction and Building Materials, 57, 30–37. https://doi.org/10.1016/j.conbuildmat.2014.01.057
  • Ma, S., Nemcik, J., Aziz, N., & Zhang, Z. (2016). Numerical modeling of fully grouted rockbolts reaching free-end slip. International Journal of Geomechanics, 16(1), 04015020.https://doi.org/10.1061/(ASCE)GM.1943-5622.0000484
  • Ma, S., Zhao, Z., Nie, W., & Gui, Y. (2016). A numerical model of fully grouted bolts considering the tri-linear shear bond–slip model. Tunnelling and Underground Space Technology, 54, 73–80. https://doi.org/10.1016/j.tust.2016.01.033
  • Ma, S., Zhao, Z., Nie, W., & Zhu, X. (2017). An analytical model for fully grouted rockbolts with consideration of the pre- and post-yielding behavior. Rock Mechanics and Rock Engineering, 50(11), 3019–3028. https://doi.org/10.1007/s00603-017-1272-5
  • Mashaly, A. O., Shalaby, B. N., & Rashwan, M. A. (2018). Performance of mortar and concrete incorporating granite sludge as cement replacement. Construction and Building Materials, 169, 800–818. https://doi.org/10.1016/j.conbuildmat.2018.03.046
  • Meng, B., Jing, H., Yang, S., Cui, T., & Li, B. (2019). Experimental study on shear behavior of bolted cement mortar blocks under constant normal stiffness. KSCE Journal of Civil Engineering, 23(8), 3724–3734. https://doi.org/10.1007/s12205-019-0077-3
  • Moosavi, M. (1997). Load distribution along fully grouted cable bolts based on constitutive models obtained from modified Hoek cells. Queen’s University at Kingston.
  • Moosavi, M., & Bawden, W. F. (2003). Shear strength of Portland cement grout. Cement and Concrete Composites, 25(7), 729–735. https://doi.org/10.1016/S0958-9465(02)00101-4
  • Muralha, J., Grasselli, G., Tatone, B., Blümel, M., Chryssanthakis, P., & Yujing, J. (2014). ISRM suggested method for laboratory determination of the shear strength of rock joints: Revised version. Rock Mechanics and Rock Engineering, 47(1), 291–302. https://doi.org/10.1007/s00603-013-0519-z
  • Nemcik, J., Ma, S., Aziz, N., Ren, T., & Geng, X. (2014). Numerical modelling of failure propagation in fully grouted rock bolts subjected to tensile load. International Journal of Rock Mechanics and Mining Sciences, 71, 293–300. https://doi.org/10.1016/j.ijrmms.2014.07.007
  • Reichert, R. D. (1991). A laboratory and field investigation of the major factors influencing bond capacity of grouted cable bolts. Queen’s University.
  • Saadat, M., & Taheri, A. (2020). A numerical study to investigate the influence of surface roughness and boundary condition on the shear behaviour of rock joints. Bulletin of Engineering Geology and the Environment, 79(5), 2483–2498. https://doi.org/10.1007/s10064-019-01710-z
  • Shrivastava, A., & Rao, K. (2009). Shear behaviour of jointed rock: A state of art. IGC, 2009, 245–249.
  • Singh, M., Raj, A., & Singh, B. (2011). Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. International Journal of Rock Mechanics and Mining Sciences, 48(4), 546–555. https://doi.org/10.1016/j.ijrmms.2011.02.004
  • Strantza, M., Van Hemelrijck, D., Guillaume, P., & Aggelis, D. G. (2017). Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components. Mechanics Research Communications, 84, 8–13. https://doi.org/10.1016/j.mechrescom.2017.05.009
  • Tang, Y., & Ranjith, P. G. (2018). An experimental and analytical study of the effects of shear displacement, fluid type, joint roughness, shear strength, friction angle and dilation angle on proppant embedment development in tight gas sandstone reservoirs. International Journal of Rock Mechanics and Mining Sciences, 107, 94–109. https://doi.org/10.1016/j.ijrmms.2018.03.008
  • Tatone, B. S., & Grasselli, G. (2013). An investigation of discontinuity roughness scale dependency using high-resolution surface measurements. Rock Mechanics and Rock Engineering, 46(4), 657–681. https://doi.org/10.1007/s00603-012-0294-2
  • Wu, Z., Yang, S., Wu, Y., & Hu, X. (2009). Analytical method for failure of anchor-grout-concrete anchorage due to concrete cone failure and interfacial debonding. Journal of Structural Engineering, 135(4), 356–365. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(356)
  • Yazici, S., & Kaiser, P. K. (1992). Bond strength of grouted cable bolts. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(3), 279–292. https://doi.org/10.1016/0148-9062(92)93661-3
  • Zhang, C., Cui, G., Chen, X., Zhou, H., & Deng, L. (2020). Effects of bolt profile and grout mixture on shearing behaviors of bolt-grout interface. Journal of Rock Mechanics and Geotechnical Engineering, 12(2), 242–255. https://doi.org/10.1016/j.jrmge.2019.10.004
  • Zhao, J. (2000). Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. International Journal of Rock Mechanics and Mining Sciences, 37(7), 1115–1121. https://doi.org/10.1016/S1365-1609(00)00049-6
  • Zhao, X., & Cai, M. (2010). A mobilized dilation angle model for rocks. International Journal of Rock Mechanics and Mining Sciences, 47(3), 368–384. https://doi.org/10.1016/j.ijrmms.2009.12.007
  • Zhao, H., Hou, J., Zhang, L., & Zhao, M. (2021). Towards concrete-rock interface shear containing similar triangular asperities. International Journal of Rock Mechanics and Mining Sciences, 137, 104547. https://doi.org/10.1016/j.ijrmms.2020.104547

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.