119
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Study of the rheological properties of clayey suspensions: an interest in the field of landfills

, &
Pages 779-794 | Received 05 Aug 2022, Accepted 14 Jun 2023, Published online: 28 Jun 2023

References

  • Abdellah, D., Gueddouda, M. K., Goual, I., Souli, H., & Ghembaza, M. S. (2020). Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture. Construction and Building Materials, 234, 117356. https://doi.org/10.1016/j.conbuildmat.2019.117356
  • Abend, S., & Lagaly, G. (2000). Sol–gel transitions of sodium montmorillonite dispersions. Applied Clay Science, 16(3–4), 201–227. https://doi.org/10.1016/S0169-1317(99)00040-X
  • Abu-Jdayil, B. (2011). Rheology of sodium and calcium bentonite–water dispersions: Effect of electrolytes and aging time. International Journal of Mineral Processing, 98(3–4), 208–213. https://doi.org/10.1016/j.minpro.2011.01.001
  • Agwu, O. E., Akpabio, J. U., Ekpenyong, M. E., Inyang, U. G., Asuquo, D. E., Eyoh, I. J., & Adeoye, O. S. (2021). A comprehensive review of laboratory. field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. Journal of Natural Gas Science and Engineering, 94, 104046. https://doi.org/10.1016/j.jngse.2021.104046
  • Allain, C., & Senis, S. (1999). Sedimentation and aggregation in colloidal suspensions. In B. Ildefonse, C. Allain, & P. Coussot (Eds.), From large natural flows to the dynamics of the sand pile (pp. 157–168). Cemagref Editions.
  • Andaverde, J. A., Wong-Loya, J. A., Vargas-Tabares, Y., & Robles, M. (2019). A practical method for determining the rheology of drilling fluid. Journal of Petroleum Science and Engineering, 180, 150–158. https://doi.org/10.1016/j.petrol.2019.05.039
  • Au, P.-I., & Leong, Y.-K. (2013). Rheological and zeta potential behaviour of kaolin and bentonite composite slurries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 530–541. https://doi.org/10.1016/j.colsurfa.2013.06.039
  • Benslimane, A., Achrar, L., Francois, P., & Bekkour, P. (2014). Experimental study of the flow of a thixotropic fluid: Bentonite suspensions. 7th International Symposium on Hydrocarbons and Chemistry. at INH Boumerdes, Algeria. 8.
  • Benyounes, K., Benchabane, A., & Mellak, A. (2010). Rheological characterization of Maghnia bentonite in aqueous suspension without and with anionic additives. Courrier du Savoir, 10, 51–57.
  • Besq, A., Pantet, A., Monnet, P., Tillet, Y., & Laforest, C. (2001). Physico-chemical and rheological characterization of bentonite sludge. Technical report. National Microtunnels Project. Directorate of Research and Scientific and Technical Affairs. 40.
  • Coussot, P., & Ancey, A. (1999). Rheophysics of pastes and suspensions. EDP Sciences. Les Ulis. 264.
  • Coussot, P., & Van Damme, H. (1999). Physico-chemistry and rheology of clay-water mixtures. In B. Ildefonse, C. Allain, & P. Coussot (Ed.), From large natural flows to the dynamics of the sand pile (pp. 169–192). Cemagref Editions.
  • Cuisinier, O., Deneele, D., Masrouri, F., Abdallah, A., & Conil, N. (2014). Impact of high-pH fluid circulation on long term hydromechanical behavior and microstructure of compacted clay from the laboratory of Meuse-Haute Marne (France). Applied Clay Science, 88–89, 1–9. https://doi.org/10.1016/j.clay.2013.12.008
  • Du, M., Liu, J., Clode, P., & Leong, Y.-K. (2019). Microstructure and rheology of bentonite slurries containing multiplecharge phosphate-based additives. Applied Clay Science, 169, 120–128.https://doi.org/10.1016/j.clay.2018.12.023
  • Dutta, J., & Mishra, A. K. (2016). Consolidation behaviour of bentonites in the presence of salt solutions. Applied Clay Science, 120, 61–69. https://doi.org/10.1016/j.clay.2015.12.001
  • Gasmi, M., Al-Mukhtar, M., Ariguib, N. K., & Bergaya, F. (2000). The nature of the compensating cation and the rheological behavior of clays: An intimate dependence. Comptes Rendus de L'Académie Des Sciences - Series IIA - Earth and Planetary Science, 330(6), 385–390. https://doi.org/10.1016/S1251-8050(00)00150-6
  • Goh, R., Leong, Y.-K., & Lehane, B. (2011). Bentonite slurries—zeta potential, yield stress, adsorbed additive and time-dependent behaviour. Rheologica Acta, 50(1), 29–38. https://doi.org/10.1007/s00397-010-0498-x
  • Heller, H., & Keren, R. (2001). Rheology of Na-rich montmorillonite suspension as affected by electrolyte concentration and shear rate. Clays and Clay Minerals, 49(4), 286–291. https://doi.org/10.1346/CCMN.2001.0490402
  • Kelessidis, V. C., Tsamantaki, C., & Dalamarinis, P. (2007). Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Applied Clay Science, 38(1–2), 86–96. https://doi.org/10.1016/j.clay.2007.01.011
  • Lagaly, G. (1989). Principles of flow of kaolin and bentonite dispersions. Applied Clay Science, 4(2), 105–123. https://doi.org/10.1016/0169-1317(89)90003-3
  • Lagaly, G., & Ziesmer, S. (2003). Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions. Advances in Colloid and Interface Science, 100–102, 105–128. https://doi.org/10.1016/S0001-8686(02)00064-7
  • Laribi, S., Fleureau, J.-M., Grossiord, J.-L., & Kbir-Ariguib, N. (2006). Effect of pH on the rheological behavior of pure and interstratified smectite clays. Clays and Clay Minerals, 54(1), 29–37. https://doi.org/10.1346/CCMN.2006.0540104
  • Li, J.-s., Xue, Q., Wang, P., & Li, Z.-z. (2015). Effect of lead(II) on the mechanical behavior and microstructure. Applied Clay Science, 105–106, 192–199. https://doi.org/10.1016/j.clay.2014.12.030
  • Markgraf, W., & Horn, R. (2005). Rheology in soil mechanics. Structural changes in soils depending on the salt- and water content. Annual Transactions of the Nordic Rheology Society, 13, 149–154.
  • Mpofu, P., Addai-Mensah, J., & Ralston, J. (2003). Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions. International Journal of Mineral Processing, 71(1–4), 247–268. https://doi.org/10.1016/S0301-7516(03)00062-0
  • Nguyen, X. P., Cui, Y. J., Tang, A. M., Li, X. L., & Wouters, L. (2014). Physical and microstructural impacts on the hydro-mechanical behaviour of Ypresian clays. Applied Clay Science, 102(2014), 172–185. https://doi.org/10.1016/j.clay.2014.09.038
  • Nuntiya, A., & Prasanphan, S. (2006). The rheological behavior of kaolin suspensions. Chiang Mai Journal of Science, 33(3), 271–281.
  • Pakdaman, E., Osfouri, S., Azin, R., Niknam, K., & Roohi, A. (2019). Improving the rheology. lubricity. and differential sticking properties of water-based drilling muds at high temperatures using hydrophilic Gilsonite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123930. https://doi.org/10.1016/j.colsurfa.2019.123930
  • Pantet, A., & Monnet, P. (2007). Liquid-solid transition of kaolinite suspensions. Mechanics of Materials, 39(9), 819–833. https://doi.org/10.1016/j.mechmat.2006.12.004
  • Paumier, S. (2007). Factors determining the organization and rheology of the clay-water system for smectite suspensions. [PhD thesis]. in Applied Geology. Higher Engineering School of Poitiers. 249.
  • Permien, T., & Lagaly, G. (1994). The rheological and colloidal properties of bentonite suspensions in the presence of organic compounds: III. The effect of alcohols on the coagulation of sodium montmorillonite. Colloid & Polymer Science, 272(10), 1306–1312. https://doi.org/10.1346/CCMN.1995.0430210
  • Plee, D., Lebedenko, F., Obrecht, F., Letellier, M., & Van Damme, H. (1990). Microstructure, permeability and rheology of bentonite - cement slurries. Cement and Concrete Research, 20(1), 45–61. https://doi.org/10.1016/0008-8846(90)90115-E
  • Robin, V., Cuisinier, O., Masrouri, F., & Javadi, A. A. (2014). Chemo-mechanical modelling of lime treated soils. Applied Clay Science, 95, 211–219. https://doi.org/10.1016/j.clay.2014.04.015
  • Rosin-Paumier, S., Touze-Foltz, N., & Pantet, A. (2011). Impact of a synthetic leachate on permittivity of GCLs measured by filter press. Geotextiles and Geomembranes, 29(3), 211–221. https://doi.org/10.1016/j.geotexmem.2010.11.001
  • Roustaei, A., Gosselin, A., & Frigaard, I. A. (2015). Residual drilling mud during conditioning of uneven boreholes in primary cementing. Part 1: Rheology and geometry effects in non-inertial flows. Journal of Non-Newtonian Fluid Mechanics, 220, 87–98. https://doi.org/10.1016/j.jnnfm.2014.09.019
  • Shakeel, A., Kirichek, A., & Chassagne, C. (2021). Rheology and yielding transitions in mixed kaolinite/bentonite suspensions. Applied Clay Science, 211, 106206. volume https://doi.org/10.1016/j.clay.2021.106206
  • Sherwood, J. D. (1997). Initial and final stages of compressible filter cake compaction. AIChE Journal, 43(6), 1488–1493. https://doi.org/10.1002/aic.690430612
  • Tombácz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of different electrolytes. Applied Clay Science, 27(1–2), 75–94. https://doi.org/10.1016/j.clay.2004.01.001
  • Tunc, S., & Duman, O. (2008). The effect of different molecular weight of poly(ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1–3), 93–99. https://doi.org/10.1016/j.colsurfa.2007.09.039
  • Wagner, J.-F. (2013). Clay liners and waste disposal. In F. Berghaya & G. Lagaly (Eds.), Developpments in clay science (pp. 671–676). Elsevier.
  • Weiss, A., & Frank, R. (1961). About the structure of the skeleton in thixotropic gels. Zeitschrift Für Naturforschung B, 16(2), 141–142. https://doi.org/10.1515/znb-1961-0216
  • Yonli, H. F., François, B., Toguyeni, D. Y. K., & Pantet, A. (2022). Comparative study of the hydro-mechanical behavior of two clayey soils in presence of household waste leachates. Global Journal of Environmental Science and Management, 8(2), 169–182. https://doi.org/10.22034/GJESM.2022.02.02
  • Yonli, H. F., Toguyeni, D. Y. K., & Sougoti, M. (2017). Study of the influence of a young synthetic leachate on the hydromechanical properties of a swelling clay. Journal of Environmental Science and Engineering B, 6, 569–581. https://doi.org/10.17265/2162-5263/2017.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.