96
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical behavior and particle crushing of marine carbonate gravel in Xisha Islands, South China Sea

Pages 973-992 | Received 09 Nov 2022, Accepted 13 Jul 2023, Published online: 03 Aug 2023

References

  • Airey, D. W., & Fahey, M. (1991). Cyclic response of calcareous soil from the North West Shelf of Australia. Géotechnique, 41(1), 101–121. https://doi.org/10.1680/geot.1991.41.1.101
  • Knodel, P. C., Al-Douri, R. H., & Poulos, H. G. (1992). Static and cyclic direct shear tests on carbonate sands. Geotechnical Testing Journal, 15(2), 138–157. https://doi.org/10.1520/GTJ10236J
  • Altuhafi, F. N., & Coop, M. R. (2011). Changes to particle characteristics associated with the compression of sands. Géotechnique, 61(6), 459–471. https://doi.org/10.1680/geot.9.P.114
  • ASTM D 2487-11. (2011). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, USA.
  • Bandini, V., & Coop, M. R. (2011). The influence of particle breakage on the location of the critical state line of sands. Soils and Foundations, 51(4), 591–600. https://doi.org/10.3208/sandf.51.591
  • Been, K., Jefferies, M. G., & Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365–381. https://doi.org/10.1680/geot.1991.41.3.365
  • Brandes, H. G. (2011). Simple shear behavior of calcareous and quartz sands. Geotechnical and Geological Engineering, 29(1), 113–126. https://doi.org/10.1007/s10706-010-9357-x
  • Cai, G., Miao, L., Chen, H., Sun, G., Wu, J., & Xu, Y. (2013). Grain size and geochemistry of surface sediments in northwestern continental shelf of the South China Sea. Environmental Earth Sciences, 70(1), 363–380. https://doi.org/10.1007/s12665-012-2133-x
  • Chen, S. S., Zhang, J. H., Long, Z. L., Kuang, D. M., & Cai, Y. (2022). Effects of particle size on the particle breakage of calcareous sands under impact loadings. Construction and Building Materials, 341(25), 127809. https://doi.org/10.1016/j.conbuildmat.2022.127809
  • Chen, J.-F., Akosah, S., Ma, C., & Gidigasu, S. S. R. (2023). Large-scale triaxial tests of reinforced coral sand with different grain size distributions. Marine Georesources & Geotechnology, 41(5), 544–554. and https://doi.org/10.1080/1064119X.2022.2068462
  • Cheng, L., Cord-Ruwisch, R., & Shahin, M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81–90. https://doi.org/10.1139/cgj-2012-0023
  • Choobbasti, A. J., Vafaei, A., & Soleimani Kutanaei, S. (2018). Static and cyclic triaxial behavior of cemented sand with nanosilica. Journal of Materials in Civil Engineering, 30(10), 04018269. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002464
  • Coop, M. R. (1990). The mechanics of uncemmented carbonate sands. Géotechnique, 40(4), 607–626. https://doi.org/10.1680/geot.1990.40.4.607
  • Coop, M. R., & Lee, I. K. (1993). The behaviour of granular soils at high stresses. In Predictive Soil Mechanics: Proceedings of the Wroth Memorial Symposium on Predictive Soil Mechanics (pp. 186–198). Thomas Telford.
  • Coop, M. R., Sorensen, K. K., Bodas, T., & Georgoutsos, G. (2004). Particle breakage during shearing of a carbonate sand. Géotechnique, 54(3), 157–163. https://doi.org/10.1680/geot.2004.54.3.157
  • Donohue, S., O'sullivan, C., & Long, M. (2009). Particle breakage during cyclic triaxial loading of a carbonate sand. Géotechnique, 59(5), 477–482. https://doi.org/10.1680/geot.2008.T.003
  • Einav, I. (2007). Breakage mechanics—part I: Theory. Journal of the Mechanics and Physics of Solids, 55(6), 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003
  • Fu, Z., Chen, S., & Peng, C. (2013). Modeling the cyclic behaviour of rockfill materials within the framework of generalized plasticity. International Journal of Geomechanics, 14(2), 191–204. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000302
  • Ghadakpour, M., Janalizadeh Choobbasti, A., & Soleimani Kutanaei, S. (2019). Investigation of the deformability properties of fiber reinforced cemented sand. Journal of Adhesion Science and Technology, 33(17), 1913–1938. https://doi.org/10.1080/01694243.2019.1619224
  • Goodarzi, S., & Shahnazari, H. (2019). Strength enhancement of geotextile-reinforced carbonate sand. Geotextiles and Geomembranes, 47(2), 128–139. https://doi.org/10.1016/j.geotexmem.2018.12.004
  • Guyon, E. T., & Troadec, J. (1994). Du sac de billes au tas de sable. Odile Jacob.
  • Hardin, B. O. (1985). Crushing of soil particles. Journal of Geotechnical Engineering, 111(10), 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
  • Hassanlourad, M., Salehzadeh, H., & Shahnazari, H. (2014). Drained shear strength of carbonate sands based on energy approach. International Journal of Geotechnical Engineering, 8(1), 1–9. https://doi.org/10.1179/1938636213Z.00000000050
  • Huang, J., Xu, S., Yi, H., & Hu, S. (2014). Size effect on the compression breakage strengths of glass particles. Powder Technology, 268(1), 86–94. https://doi.org/10.1016/j.powtec.2014.08.037
  • Indraratna, B., Sun, Q. D., & Nimbalkar, S. (2015). Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage. Canadian Geotechnical Journal, 52(1), 73–86. https://doi.org/10.1139/cgj-2013-0361
  • Indraratna, B., Nimbalkar, S., Coop, M., & Sloan, S. W. (2014). A constitutive model for coal-fouled ballast capturing the effects of particle degradation. Computers and Geotechnics. 61, 96–107. https://doi.org/10.1016/j.compgeo.2014.05.003
  • Ishihara, K., Tatsuoka, F., & Yasuda, S. (1975). Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations, 15(1), 29–44. https://doi.org/10.3208/sandf1972.15.29
  • Jin, Y. F., Yin, Z. Y., Wu, Z. X., & Zhou, W. H. (2018). Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Engineering, 154, 416–429. https://doi.org/10.1016/j.oceaneng.2018.01.023
  • Kuang, D., Long, Z., Guo, R., & Yu, P. (2021). Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles. Marine Georesources & Geotechnology, 39(5), 543–553. https://doi.org/10.1080/1064119X.2020.1725194
  • Kutanaei, S. S., Afrakoti, M. T. P., & Choobbasti, A. J. (2021). Effect of coal waste on grain failure of cement-stabilized sand due to compaction. Arabian Journal of Geosciences, 14(12), 1–10. https://doi.org/10.1007/s12517-021-07392-w
  • Li, X. S., Dafalias, Y. F., & Wang, Z. L. (1999). State-dependent dilatancy in critical-state constitutive modelling of sand. Canadian Geotechnical Journal, 36(4), 599–611. https://doi.org/10.1139/t99-029
  • Li, X. S., & Wang, Y. (1998). (1998). Linear representation of steady-state line for sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1215–1217. 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241
  • Lim, W. L., & McDowell, G. R. (2007). The importance of coordination number in using agglomerates to simulate crushable particles in the discrete element method. Géotechnique, 57(8), 701–705. https://doi.org/10.1680/geot.2007.57.8.701
  • Liu, L., Liu, H., Xiao, Y., Chu, J., Xiao, P., & Wang, Y. (2018). Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bulletin of Engineering Geology and the Environment, 77(4), 1781–1791. https://doi.org/10.1007/s10064-017-1106-4
  • Ma, L., Li, Z., Wang, M., Wei, H., & Fan, P. (2019). Effects of size and loading rate on the mechanical properties of single coral particles. Powder Technology, 342, 961–971. https://doi.org/10.1016/j.powtec.2018.10.037
  • Mao, X., & Fahey, M. (2003). Behavior of calcareous soils in undrained cyclic simple shear. Géotechnique, 53(8), 715–727. https://doi.org/10.1680/geot.53.8.715.37395
  • McDowell, G. R., & Bolton, M. D. (1998). On the mechanics of crushable aggregates. Géotechnique, 48(5), 667–679. https://doi.org/10.1680/geot.1998.48.5.667
  • McDowell, G. R., Bolton, M. D., & Robertson, D. (1996). The fractal crushing of granular materials. Journal of the Mechanics and Physics of Solids, 44(12), 2079–2101. https://doi.org/10.1016/S0022-5096(96)00058-0
  • Mehta, A. A., & Patel, A. (2018). An investigation on the particle breakage of Indian River sands. Engineering Geology, 233(1), 23–37. https://doi.org/10.1016/j.enggeo.2017.12.001
  • Muir Wood, D., & Maeda, K. (2008). Changing grading of soil: Effect on critical states. Acta Geotechnica, 3(1), 3–14. https://doi.org/10.1007/s11440-007-0041-0
  • Murff, J. D. (1987). Pile capacity in calcareous sands: State of the art. Journal of Geotechnical Engineering, 113(5), 490–507. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:5(490)
  • Nakata, Y., Hyodo, M., Hyde, A. F. L., Kato, Y., & Murata, H. (2001). Microscopic particle crushing of sand subjected to high-pressure one dimensional compression. Soils and Foundations, 41(1), 69–82. https://doi.org/10.3208/sandf.41.69
  • Parra Bastidas, A. M. (2016). Ottawa F-65 sand characterization [Ph.D. thesis]. University of California at Davis.
  • Pestana, J. M., & Whittle, A. J. (1995). Compression model for cohesionless soils. Géotechnique, 45(4), 611–631. https://doi.org/10.1680/geot.1995.45.4.611
  • Porcino, D., Caridi, G., & Ghionna, V. N. (2008). Undrained monotonic and cyclic simple shear behavior of carbonate sand. Géotechnique, 58(8), 635–644. https://doi.org/10.1680/geot.2007.00036
  • Poulos, S. J. (1981). The steady state of deformation. Journal of the Geotechnical Engineering Division, 107(5), 553–562. https://doi.org/10.1061/AJGEB6.0001129
  • Qadimi, A., & Coop, M. R. (2007). The undrained cyclic behaviour of a carbonate sand. Géotechnique, 57(9), 739–750. https://doi.org/10.1680/geot.2007.57.9.739
  • Rasheed, M., Badran, M. I., & Huettel, M. (2003). Particulate matter filtration and seasonal nutrient dynamics in permeable carbonate and silicate sands of the gulf of aqaba, red sea. Coral Reefs, 22(2), 167–177. https://doi.org/10.1007/s00338-003-0300-y
  • Rui, S., Wang, L., Guo, Z., Cheng, X., & Wu, B. (2021). Monotonic behavior of interface shear between carbonate sands and steel. Acta Geotechnica, 16(1), 167–187. https://doi.org/10.1007/s11440-020-00987-9
  • Sadrekarimi, A., & Olson, S. M. (2011). Critical state friction angle of sands. Géotechnique, 61(9), 771–783. https://doi.org/10.1680/geot.9.P.090
  • Shahnazari, H., & Rezvani, R. (2013). Effective parameters for the particle breakage of calcareous sands: An experimental study. Engineering Geology, 159(9), 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005
  • Underwood, J. N., Wilson, S. K., Ludgerus, L., & Evans, R. D. (2013). Integrating connectivity science and spatial conservation management of coral reefs in north-west Australia. Journal for Nature Conservation, 21(3), 163–172. https://doi.org/10.1016/j.jnc.2012.12.001
  • Verdugo, R., & Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundations, 36(2), 81–91. https://doi.org/10.3208/sandf.36.2_81
  • Wang, X., Wang, X., Jin, Z., Meng, Q., Zhu, C., & Wang, R. (2017). Shear characteristics of calcareous gravelly soil. Bulletin of Engineering Geology and the Environment, 76(2), 561–573. https://doi.org/10.1007/s10064-016-0978-z
  • Wang, X. Z., Jiao, Y. Y., Wang, R., Hu, M. J., Meng, Q. S., & Tan, F. Y. (2011). Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea. Engineering Geology, 120(1-4), 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011
  • Wang, X. Z., Weng, Y. L., Wei, H. Z., Meng, Q. S., & Hu, M. J. (2019). Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea. Engineering Geology, 261(1), 105274. https://doi.org/10.1016/j.enggeo.2019.105274
  • Watabe, Y., Sassa, S., Kaneko, T., & Nakata, Y. (2015). Mechanical characteristics of reconstituted coral gravel soils with different fractions of finger-coral fragments and silt matrix. Soils and Foundations, 55(5), 1233–1242. https://doi.org/10.1016/j.sandf.2015.09.022
  • Wei, H., Zhao, T., He, J., Meng, Q., & Wang, X. (2018). Evolution of particle breakage for calcareous sands during ring shear tests. International Journal of Geomechanics, 18(2), 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073
  • Wu, Y. H., Wu, Y., Liu, J., Li, N., & Li, S. (2022). The evolution and influence of particle breakage on the compression behavior of calcareous sand. Marine Georesources & Geotechnology, 40(6), 668–678. https://doi.org/10.1080/1064119X.2021.1924902
  • Xiao, Y., Liu, H. L., Zhu, J. G., & Shi, W. C. (2012). Modeling and behaviours of rockfill materials in three-dimensional stress space. Science China Technological Sciences, 55(10), 2877–2892. https://doi.org/10.1007/s11431-012-4979-2
  • Xiao, Y., Liu, H., Ding, X., Chen, Y., Jiang J., Zhang, W., 2016. Influence of particle breakage on critical state line of rockfill material. International Journal of Geomechanics16(1), 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538
  • Xiao, Y., Liu, H., Chen, Q., Ma, Q., Xiang, Y., & Zheng, Y. (2017). Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotechnica, 12(5), 1177–1184. https://doi.org/10.1007/s11440-017-0580-y
  • Xiao, Y., Yuan, Z., Lv, Y., Wang, L., & Liu, H. (2018). Fractal crushing of carbonate and quartz sands along the specimen height under impact loading. Construction and Building Materials, 182, 188–199. https://doi.org/10.1016/j.conbuildmat.2018.06.112
  • Yang, J., Wang, J., Dong, L., & Fan, P. (2022). Axial deformation behavior of precompressed coral sand under repeated impacts. Journal of Coastal Research, 38(3), 592–602. https://doi.org/10.2112/JCOASTRES-D-21-00099.1
  • Yim, W. S. (2001). Stratigraphy of quaternary offshore sand and gravel deposits in the Hong Kong Sar, China. Quaternary International, 82(1), 101–116. https://doi.org/10.1016/S1040-6182(01)00012-X
  • Yu, F. (2017a). Particle breakage and the drained shear behavior of sands. International Journal of Geomechanics, 17(8), 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919
  • Yu, F. (2017b). Particle breakage and the critical state of sands. Géotechnique, 67(8), 713–719. https://doi.org/10.1680/jgeot.15.P.250

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.