216
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Cleaner production of the precast concrete industry: comparative life cycle analysis of concrete using recycled aggregates from crushed precast rejects

, , &
Pages 1014-1038 | Received 18 Mar 2023, Accepted 14 Jul 2023, Published online: 03 Aug 2023

References

  • Ahmed, S., Al-Dawood, Z., Abed, F., Mannan, M. A., & Al-Samarai, M. (2021). Impact of using different materials, curing regimes, and mixing procedures on compressive strength of reactive powder concrete-A review. Journal of Building Engineering, 44, 103238. https://doi.org/10.1016/j.jobe.2021.103238
  • Alghazali, H. H., Aljazaeri, Z. R., & Myers, J. J. (2020). Effect of accelerated curing regimes on high volume Fly ash mixtures in precast manufacturing plants. Cement and Concrete Research, 131, 105913. https://doi.org/10.1016/j.cemconres.2019.105913
  • Bagarić, M., Pečur, I. B., & Milovanović, B. (2020). Hygrothermal performance of ventilated prefabricated sandwich wall panel from recycled construction and demolition waste–A case study. Energy and Buildings, 206, 109573. https://doi.org/10.1016/j.enbuild.2019.109573
  • Baldwin, A., Poon, C. S., Shen, L. Y., Austin, S., & Wong, I. (2009). Designing out waste in high-rise residential buildings: Analysis of precasting methods and traditional construction. Renewable Energy. 34(9), 2067–2073. https://doi.org/10.1016/j.renene.2009.02.008
  • Bergman, T. L., Lavine, A., Incropera, F. P., Dewitt, D.P. (2017). Fundamentals of heat and mass transfer. John Wiley & Sons.
  • Cao, X., Li, X., Zhu, Y., & Zhang, Z. (2015). A comparative study of environmental performance between prefabricated and traditional residential buildings in China. Journal of Cleaner Production, 109, 131–143. https://doi.org/10.1016/j.jclepro.2015.04.120
  • Cassagnabère, F., Mouret, M., Escadeillas, G., & Broilliard, P. (2009). Use of flash metakaolin in a slip-forming concrete for the precast industry. Magazine of Concrete Research, 61(10), 767–778. https://doi.org/10.1680/macr.2008.61.10.767
  • Cenci, C. S., Tadeu, A., de Brito, J., Veiga, R. (2021). A brief framework of construction and demolition waste composition in Portugal within the European context. Proceedings of the CEES. 1–8.
  • Chang, Y., Li, X., Masanet, E., Zhang, L., Huang, Z., & Ries, R. (2018). Unlocking the green opportunity for prefabricated buildings and construction in China. Resources, Conservation and Recycling, 139, 259–261. https://doi.org/10.1016/j.resconrec.2018.08.025
  • Chen, C., Habert, G., Bouzidi, Y., Jullien, A., & Ventura, A. (2010). LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 54(12), 1231–1240. https://doi.org/10.1016/j.resconrec.2010.04.001
  • de Brito, J., Hafez, H., Kurda, R., Silvestre, J. (2022). Calculation of the environmental impact of the integration of industrial waste in concrete using LCA. In Handbook of sustainable concrete and industrial waste management (pp. 553–577). Elsevier Science.
  • Dias, A., Nezami, S., Silvestre, J., Kurda, R., Silva, R., Martins, I., & de Brito, J. (2022). Environmental and economic comparison of natural and recycled aggregates using LCA. Recycling, 7(4), 43. https://doi.org/10.3390/recycling7040043
  • Fiol, F., Revilla-Cuesta, V., Thomas, C., & Manso, J. M. (2023). Self-compacting concrete containing coarse recycled precast-concrete aggregate and its durability in marine-environment-related tests. Construction and Building Materials, 377, 131084. https://doi.org/10.1016/j.conbuildmat.2023.131084
  • Fiol, F., Thomas, C., Manso, J. M., & López, I. (2021). Transport mechanisms as indicators of the durability of precast recycled concrete. Construction and Building Materials, 269, 121263. https://doi.org/10.1016/j.conbuildmat.2020.121263
  • Fiol, F., Thomas, C., Muñoz, C., Ortega-López, V., & Manso, J. M. (2018). The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete. Construction and Building Materials, 182, 309–323. https://doi.org/10.1016/j.conbuildmat.2018.06.132
  • GaBi Software. (2021). Retrieved 2021, June 25, from http://www.gabi-software.com/china/gabi.
  • Gallego-Schmid, A., Chen, H.-M., Sharmina, M., & Mendoza, J. M. F. (2020). Links between circular economy and climate change mitigation in the built environment. Journal of Cleaner Production, 260, 121115. https://doi.org/10.1016/j.jclepro.2020.121115
  • Gao, Y., & Tian, X. L. (2020). Prefabrication policies and the performance of construction industry in China. Journal of Cleaner Production, 253, 120042. https://doi.org/10.1016/j.jclepro.2020.120042
  • GB30510. (2018). Fuel consumption limits for heavy-duty commercial vehicles.
  • Ghanbari, M., Abbasi, A. M., & Ravanshadnia, M. (2018). Production of natural and recycled aggregates: The environmental impacts of energy consumption and CO2 emissions. Journal of Material Cycles and Waste Management, 20(2), 810–822. https://doi.org/10.1007/s10163-017-0640-2
  • Ghayeb, H. H., Razak, H. A., & Sulong, N. R. (2020). Performance of dowel beam-to-column connections for precast concrete systems under seismic loads: A review. Construction and Building Materials, 237, 117582. https://doi.org/10.1016/j.conbuildmat.2019.117582
  • González-Fonteboa, B., González-Taboada, I., Carro-López, D., & Martínez-Abella, F. (2021). Influence of the mixing procedure on the fresh state behaviour of recycled mortars. Construction and Building Materials, 299, 124266. https://doi.org/10.1016/j.conbuildmat.2021.124266
  • Guangdong Engineering Cost Information Platform. (2022). Retrieved 2022, March 20, from http://www.gdcost.com.
  • Gursel, A. P. (2014). Life-cycle assessment of concrete: Decision-support tool and case study application. University of California.
  • Hafez, H., Kurda, R., Al-Ayish, N., Garcia-Segura, T., Cheung, W. M., & Nagaratnam, B. (2021). A whole life cycle performance-based Economic and Ecological assessment framework (ECO2) for concrete sustainability. Journal of Cleaner Production, 292, 126060. https://doi.org/10.1016/j.jclepro.2021.126060
  • Hafez, H., Kurda, R., Cheung, W. M., & Nagaratnam, B. (2020). Comparative life cycle assessment between imported and recovered fly ash for blended cement concrete in the UK. Journal of Cleaner Production, 244, 118722. https://doi.org/10.1016/j.jclepro.2019.118722
  • Hanna, R., & Victor, D. G. (2021). Marking the decarbonisation revolutions. Nature Energy, 6(6), 568–571. https://doi.org/10.1038/s41560-021-00854-1
  • Huysman, S., De Schaepmeester, J., Ragaert, K., Dewulf, J., & De Meester, S. (2017). Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resources, Conservation and Recycling, 120, 46–54. https://doi.org/10.1016/j.resconrec.2017.01.013
  • Jaillon, L., & Poon, C. S. (2008). Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Construction Management and Economics, 26(9), 953–966. https://doi.org/10.1080/01446190802259043
  • Jiang, Q., Wang, F., Liu, Q., Xie, J., & Wu, S. (2021). Energy consumption and environment performance analysis of induction-healed asphalt pavement by life cycle assessment (LCA). Materials, 14(5), 1244. https://doi.org/10.3390/ma14051244
  • Kaplan, G., Bayraktar, O. Y., Gholampour, A., Gencel, O., Koksal, F., & Ozbakkaloglu, T. (2021). Mechanical and durability properties of steel fiber‐reinforced concrete containing coarse recycled concrete aggregate. Structural Concrete, 22(5), 2791–2812. https://doi.org/10.1002/suco.202100028
  • Klüppel, H. J. (1998). ISO 14041: Environmental management–life cycle assessment–goal and scope definition–inventory analysis. The International Journal of Life Cycle Assessment, 3(6), 301–301. https://doi.org/10.1007/BF02979337
  • Kou, Y. W. (2021). Preliminary study on self-compacting concrete made with recycle aggregates from precast rejects [Master thesis]. South China University of Technology, Guangzhou.
  • Kurama, Y. C., Sritharan, S., Fleischman, R. B., Restrepo, J. I., Henry, R. S., Cleland, N. M., Ghosh, S. K., & Bonelli, P. (2018). Seismic-resistant precast concrete structures: State of the art. Journal of Structural Engineering, 144(4), 03118001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001972
  • Kurda, R., Silvestre, J. D., & de Brito, J. (2018). Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, 139, 407–417. https://doi.org/10.1016/j.resconrec.2018.07.004
  • Li, J., Song, G., Cai, M., Bian, J., & Sani Mohammed, B. (2022). Green environment and circular economy: A state-of-the-art analysis. Sustainable Energy Technologies and Assessments, 52, 102106. https://doi.org/10.1016/j.seta.2022.102106
  • Luo, T., Xue, X., Wang, Y., Xue, W., & Tan, Y. (2021). A systematic overview of prefabricated construction policies in China. Journal of Cleaner Production, 280, 124371. https://doi.org/10.1016/j.jclepro.2020.124371
  • Marinković, S. B., Ignjatović, I., & Radonjanin, V. (2013). Life-cycle assessment (LCA) of concrete with recycled aggregates (RAs). In Handbook of recycled concrete and demolition waste (pp. 569–604). Elsevier.
  • Marinković, S. B., Malešev, M., & Ignjatović, I. (2014). Life cycle assessment (LCA) of concrete made using recycled concrete or natural aggregates. In Eco-Efficient construction and building materials (pp. 239–266). Elsevier.
  • Mhatre, P., Gedam, V., Unnikrishnan, S., & Verma, S. (2021). Circular economy in built environment–Literature review and theory development. Journal of Building Engineering, 35, 101995. https://doi.org/10.1016/j.jobe.2020.101995
  • Orsini, F., & Marrone, P. (2019). Approaches for a low-carbon production of building materials: A review. Journal of Cleaner Production, 241, 118380. https://doi.org/10.1016/j.jclepro.2019.118380
  • Pan, W., & Garmston, H. (2012). Compliance with building energy regulations for new-build dwellings. Energy, 48(1), 11–22. https://doi.org/10.1016/j.energy.2012.06.048
  • Pedro, D., de Brito, J., & Evangelista, L. (2015). Performance of concrete made with aggregates recycled from precasting industry waste: Influence of the crushing process. Materials and Structures, 48(12), 3965–3978. https://doi.org/10.1617/s11527-014-0456-7
  • Pedro, D., de Brito, J., & Evangelista, L. (2017). Mechanical characterization of high performance concrete prepared with recycled aggregates and silica fume from precast industry. Journal of Cleaner Production, 164, 939–949. https://doi.org/10.1016/j.jclepro.2017.06.249
  • Priestley, M. J. N., Sritharan, S., Conley, J. R., & Stefano Pampanin, S. (1999). Preliminary results and conclusions from the PRESSS five-story precast concrete test building. PCI Journal, 44(6), 42–67. https://doi.org/10.15554/pcij.11011999.42.67
  • Ramakrishna, S., & Jose, R. (2022). Addressing sustainability gaps. The Science of the Total Environment, 806(Pt 3), 151208. https://doi.org/10.1016/j.scitotenv.2021.151208
  • ReportLinker. (2021). The global precast concrete market size is projected to grow from USD 130.6 billion in 2020 to USD 174.1 billion by 2025, at a Compound Annual Growth Rate (CAGR) of 5.9%. Retrieved 2022, October 12, from https://finance.yahoo.com/news/global-precast-concrete-market-size-12150 0528.html.
  • Revilla-Cuesta, V., Fiol, F., Perumal, P., & Ortega-López, V. (2022). Using recycled aggregate concrete at a precast-concrete plant: A multi-criteria company-oriented feasibility study. Journal of Cleaner Production, 373, 133873. https://doi.org/10.1016/j.jclepro.2022.133873
  • Rodríguez-Álvaro, R., González-Fonteboa, B., Seara-Paz, S., Rey-Bouzón, E. J. (2021). Masonry mortars, precast concrete and masonry units using coal bottom ash as a partial replacement for conventional aggregates. Construction and Building Materials, 283, 122737. https://doi.org/10.1016/j.conbuildmat.2021.122737
  • Salesa, Á., Pérez-Benedicto, J. Á., Esteban, L. M., Vicente-Vas, R., Orna-Carmona, M. (2017). Physico-mechanical properties of multi-recycled self-compacting concrete prepared with precast concrete rejects. Construction and Building Materials, 153, 364–373. https://doi.org/10.1016/j.conbuildmat.2017.07.087
  • Santos, S. A., da Silva, P. R., & de Brito, J. (2019). Durability evaluation of self-compacting concrete with recycled aggregates from the precast industry. Magazine of Concrete Research, 71(24), 1265–1282. https://doi.org/10.1680/jmacr.18.00225
  • Seara-Paz, S., González-Fonteboa, B., Martínez-Abella, F., & Eiras-López, J. (2022). Deformation recovery of reinforced concrete beams made with recycled coarse aggregates. Engineering Structures, 251, 113482. https://doi.org/10.1016/j.engstruct.2021.113482
  • Shobeiri, V., Bennett, B., Xie, T., & Visintin, P. (2021). A comprehensive assessment of the global warming potential of geopolymer concrete. Journal of Cleaner Production, 297, 126669. https://doi.org/10.1016/j.jclepro.2021.126669
  • Soares, D., de Brito, J., Ferreira, J., & Pacheco, J. (2014). Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance. Construction and Building Materials, 71, 263–272. https://doi.org/10.1016/j.conbuildmat.2014.08.034
  • Sousa-Zomer, T. T., Magalhães, L., Zancul, E., Campos, L. M., & Cauchick-Miguel, P. A. (2018). Cleaner production as an antecedent for circular economy paradigm shift at the micro-level: Evidence from a home appliance manufacturer. Journal of Cleaner Production, 185, 740–748. https://doi.org/10.1016/j.jclepro.2018.03.006
  • Stengel, T., & Schießl, P. (2014). Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures. In Eco-efficient construction and building materials (pp. 528–564). Woodhead Publishing
  • Stephan, A., & Athanassiadis, A. (2018). Towards a more circular construction sector: Estimating and spatialising current and future non-structural material replacement flows to maintain urban building stocks. Resources, Conservation and Recycling, 129, 248–262. https://doi.org/10.1016/j.resconrec.2017.09.022
  • Stokes, J. R., & Horvath, A. (2009). Energy and air emission effects of water supply. Environmental Science & Technology, 43(8), 2680–2687. https://doi.org/10.1021/es801802h
  • Stua, M., Nolden, C., & Coulon, M. (2022). Climate clubs embedded in Article 6 of the Paris Agreement. Resources, Conservation and Recycling, 180, 106178. https://doi.org/10.1016/j.resconrec.2022.106178
  • Thomas, C., Setién, J., & Polanco, J. A. (2016). Structural recycled aggregate concrete made with precast wastes. Construction and Building Materials, 114, 536–546. https://doi.org/10.1016/j.conbuildmat.2016.03.203
  • TongCheng Finance News. (2022). Retrieved 2022, October 12, from http://www.tccaijing.com/news/20200418/181151.html
  • Visintin, P., Xie, T. Y., & Bennett, B. (2020). A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 119243. https://doi.org/10.1016/j.jclepro.2019.119243
  • Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26(1), 303–329. https://doi.org/10.1146/annurev.energy.26.1.303
  • Xiao, J. Z., Zhang, H. H., & de Brito, J. (2022). Use of recycled aggregate in high-strength concrete. Materials and Structures, 55(2), 1–7. https://doi.org/10.1617/s11527-021-01871-y
  • Xu, X., Zhang, W., Wang, T., Xu, Y., & Du, H. (2021). Impact of subsidies on innovations of environmental protection and circular economy in China. Journal of Environmental Management, 289, 112385. https://doi.org/10.1016/j.jenvman.2021.112385
  • Yang, B-x., Xie, T-y., Yu, Y., Zheng, Y., & Xu, J-j (2022). Mechanical properties and environmental performance of seawater sea-sand self-compacting concrete. Advances in Structural Engineering, 25(15), 3114–3136. https://doi.org/10.1177/13694332221119863
  • Yu, Y., Zhao, X., Xie, T., & Wang, X. (2022). Eco-, economic- and mechanical- efficiencies of using precast rejects as coarse aggregates in self-compacting concrete. Case Studies in Construction Materials, 17, e01591. https://doi.org/10.1016/j.cscm.2022.e01591
  • Yu, Y., Zheng, Y., & Zhao, X. Y. (2021). Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension using discrete element method. Construction and Building Materials, 268, 121116. https://doi.org/10.1016/j.conbuildmat.2020.121116
  • Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019a). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. https://doi.org/10.1016/j.conbuildmat.2019.03.078
  • Zhang, J., Ouyang, Y., Ballesteros-Pérez, P., Li, H., Philbin, S. P., Li, Z., & Skitmore, M. (2021). Understanding the impact of environmental regulations on green technology innovation efficiency in the construction industry. Sustainable Cities and Society, 65, 102647. https://doi.org/10.1016/j.scs.2020.102647
  • Zhang, Y., Zhang, J., Luo, W., Wang, J., Shi, J., Zhuang, H., & Wang, Y. (2019b). Effect of compressive strength and chloride diffusion on life cycle CO2 assessment of concrete containing supplementary cementitious materials. Journal of Cleaner Production, 218, 450–458. https://doi.org/10.1016/j.jclepro.2019.01.335
  • Zhao, Z., Courard, L., Groslambert, S., Jehin, T., Léonard, A., & Xiao, J. (2020). Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study. Resources, Conservation and Recycling, 157, 104786. https://doi.org/10.1016/j.resconrec.2020.104786
  • Zhao, M. H., Dong, Y., & Guo, H. Y. (2021). Comparative life cycle assessment of composite structures incorporating uncertainty and global sensitivity analysis. Engineering Structures, 242, 112394. https://doi.org/10.1016/j.engstruct.2021.112394

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.