136
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of fractal surface roughness and pressure gradient on the hydraulic behavior of fluid flow through a 3D single rough fracture

, , , &
Pages 1104-1117 | Received 27 Sep 2022, Accepted 17 May 2023, Published online: 22 Aug 2023

References

  • Baghbanan, A., & Jing, L. (2008). Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1320–1334. https://doi.org/10.1016/j.ijrmms.2008.01.015
  • Briggs, S., Karney, B. W., & Sleep, B. E. (2014). Numerical modelling of flow and transport in rough fractures. Journal of Rock Mechanics and Geotechnical Engineering, 6(6), 535–545. https://doi.org/10.1016/j.jrmge.2014.10.004
  • Brown, S. R. (1995). Simple mathematical model of a rough fracture. Journal of Geophysical Research: Solid Earth, 100(B4), 5941–5952. https://doi.org/10.1029/94JB03262
  • Cao, C., Xu, Z., Chai, J., & Li, Y. (2019). Radial fluid flow regime in a single fracture under high hydraulic pressure during shear process. Journal of Hydrology, 579, 124142. https://doi.org/10.1016/j.jhydrol.2019.124142
  • Cardenas, M. B., Slottke, D. T., Ketcham, R. A., & Sharp, J. M. (2009). Effects of inertia and directionality on flow and transport in a rough asymmetric fracture. Journal of Geophysical Research, 114(B6), 1–11. https://doi.org/10.1029/2009JB006336
  • Chen, Y. D., Selvadurai, A. P. S., & Zhao, Z. H. (2021). Modeling of flow characteristics in 3D rough rock fracture with geometry changes under confining stresses. Computers and Geotechnics, 130, 103910. https://doi.org/10.1016/j.compgeo.2020.103910
  • Chen, Y. F., Liao, Z., Zhou, J. Q., Hu, R., Yang, Z. B., Zhao, X. J., Wu, X. L., & Yang, X. L. (2020). Non-Darcian flow effect on discharge into a tunnel in karst aquifers. International Journal of Rock Mechanics and Mining Sciences, 130, 104319. https://doi.org/10.1016/j.ijrmms.2020.104319
  • Chen, Y. F., Zeng, J., Shi, H. T., Wang, Y. F., Hu, R., Yang, Z. B., & Zhou, C. B. (2021). Variation in hydraulic conductivity of fractured rocks at a dam foundation during operation. Journal of Rock Mechanics and Geotechnical Engineering, 13(2), 351–367. https://doi.org/10.1016/j.jrmge.2020.09.008
  • Chen, Y. F., Zhou, J. Q., Hu, S. H., Hu, R., & Zhou, C. B. (2015). Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures. Journal of Hydrology, 529, 993–1006. https://doi.org/10.1016/j.jhydrol.2015.09.021
  • Cunningham, D., Auradou, H., Shojaei‐Zadeh, S., & Drazer, G. (2020). The effect of fracture roughness on the onset of nonlinear flow. Water Resources Research, 56(11), 1–11. https://doi.org/10.1029/2020WR028049
  • Huang, Y. B., Zhang, Y. J., Gao, X. F., Ma, Y. Q., & Hu, Z. J. (2021). Experimental and numerical investigation of seepage and heat transfer in rough single fracture for thermal reservoir. Geothermics, 95, 102163. https://doi.org/10.1016/j.geothermics.2021.102163
  • Javadi, M., Sharifzadeh, M., Shahriar, K., & Mitani, Y. (2014). Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes. Water Resources Research, 50(2), 1789–1804. https://doi.org/10.1002/2013WR014610
  • Klimczak, C., Schultz, R. A., Parashar, R., & Reeves, D. M. (2010). Cubic law with aperture-length correlation: Implications for network scale fluid flow. Hydrogeology Journal, 18(4), 851–862. https://doi.org/10.1007/s10040-009-0572-6
  • Koyama, T., Neretnieks, I., & Jing, L. (2008). A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear. International Journal of Rock Mechanics and Mining Sciences, 45(7), 1082–1101. https://doi.org/10.1016/j.ijrmms.2007.11.006
  • Lee, J., & Babadagli, T. (2021). Effect of roughness on fluid flow and solute transport in a single fracture: A review of recent developments, current trends, and future research. Journal of Natural Gas Science and Engineering, 91, 103971. https://doi.org/10.1016/j.jngse.2021.103971
  • Li, B., Liu, R., & Jiang, Y. (2016). Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. Journal of Hydrology, 538, 440–453. https://doi.org/10.1016/j.jhydrol.2016.04.053
  • Li, B., Wang, J., Liu, R., & Jiang, Y. (2021). Nonlinear fluid flow through three-dimensional rough fracture networks: Insights from 3D-printing, CT-scanning, and high-resolution numerical simulations. Journal of Rock Mechanics and Geotechnical Engineering, 13(5), 1020–1032. https://doi.org/10.1016/j.jrmge.2021.04.007
  • Liu, J., Wang, Z., Qiao, L., Li, W., & Yang, J. (2021). Transition from linear to nonlinear flow in single rough fractures: Effect of fracture roughness. Hydrogeology Journal, 29(3), 1343–1353. https://doi.org/10.1007/s10040-020-02297-6
  • Liu, R., Li, B., & Jiang, Y. (2016). Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Advances in Water Resources, 88, 53–65. https://doi.org/10.1016/j.advwatres.2015.12.002
  • Luo, Y., Zhang, Z., Wang, Y., Nemcik, J., & Wang, J. (2022). On fluid flow regime transition in rough rock fractures: Insights from experiment and fluid dynamic computation. Journal of Hydrology, 607, 127558. https://doi.org/10.1016/j.jhydrol.2022.127558
  • Mazumder, S., Karnik, A., & Wolf, K. H. (2006). Swelling of coal in response to CO2 sequestration for ECBM and its effect on fracture permeability. SPE Journal, 11(03), 390–398. https://doi.org/10.2118/97754-PA
  • Min, K. B., Jing, L. R., & Stephansson, O. (2004). Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK. Hydrogeology Journal, 12(5), 497–510. https://doi.org/10.1007/s10040-004-0331-7
  • Noiriel, C., Gouze, P., & Madé, B. (2013). 3D analysis of geometry and flow changes in a limestone fracture during dissolution. Journal of Hydrology, 486, 211–223. https://doi.org/10.1016/j.jhydrol.2013.01.035
  • Ogilvie, S. R., Isakov, E., & Glover, P. W. J. (2006). Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures. Earth and Planetary Science Letters, 241(3–4), 454–465. https://doi.org/10.1016/j.epsl.2005.11.041
  • Renshaw, C. (1995). On the relationship between mechanical and hydraulic apertures in rough-walled fractures. Journal of Geophysical Research: Solid Earth, 100(B12), 24629–24636. https://doi.org/10.1029/95JB02159
  • Rong, G., Cheng, L., Quan, J., Tan, Y., He, R., & Tan, J. (2020). Numerical simulations of incompressible fluid flow in synthetic fractures using lattice Boltzmann method. Arabian Journal of Geosciences, 13(22), 1211. https://doi.org/10.1007/s12517-020-06159-z
  • Rong, G., Tan, J., Zhan, H., He, R., & Zhang, Z. (2020). Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture. Journal of Hydrology, 589, 125162. https://doi.org/10.1016/j.jhydrol.2020.125162
  • Rong, G., Yang, J., Cheng, L., & Zhou, C. (2016). Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process. Journal of Hydrology, 541, 1385–1394. https://doi.org/10.1016/j.jhydrol.2016.08.043
  • Tan, J., Cheng, L., Rong, G., Zhan, H., & Quan, J. (2021). Multiscale roughness influence on hydrodynamic heat transfer in a single fracture. Computers and Geotechnics, 139, 104414. https://doi.org/10.1016/j.compgeo.2021.104414
  • Tzelepis, V., Moutsopoulos, K. N., Papaspyros, J. N. E., & Tsihrintzis, V. A. (2015). Experimental investigation of flow behavior in smooth and rough artificial fractures. Journal of Hydrology, 521, 108–118. https://doi.org/10.1016/j.jhydrol.2014.11.054
  • Wang, L., Cardenas, M. B., Slottke, D. T., Ketcham, R. A., & Sharp, J. M. (2015). Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness. Water Resources Research, 51(4), 2064–2080. https://doi.org/10.1002/2014WR015815
  • Witherspoon, P. A., Wang, J. S. Y., Iwai, K., & Gale, J. E. (1980). Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research, 16(6), 1016–1024. https://doi.org/10.1029/WR016i006p01016
  • Xiao, F., & Zhao, Z. (2019). Evaluation of equivalent hydraulic aperture (EHA) for rough rock fractures. Canadian Geotechnical Journal, 56(10), 1486–1501. https://doi.org/10.1139/cgj-2018-0274
  • Yin, P. J., Zhao, C., Ma, J. J., Yan, C. G., & Huang, L. C. (2020). Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique. International Journal of Rock Mechanics and Mining Sciences, 129, 104293. https://doi.org/10.1016/j.ijrmms.2020.104293
  • Zeng, Z., & Grigg, R. (2006). A criterion for non-Darcy flow in porous media. Transport in Porous Media, 63(1), 57–69. https://doi.org/10.1007/s11242-005-2720-3
  • Zhang, X., & Sanderson, D. J. (1996). Effects of stress on the two-dimensional permeability tensor of natural fracture networks. Geophysical Journal International, 125(3), 912–924. https://doi.org/10.1111/j.1365-246X.1996.tb06034.x
  • Zhang, Y., Chai, J., Cao, C., & Xu, Z. (2022). Investigating Izbash’s law on characterizing nonlinear flow in self-affine fractures. Journal of Petroleum Science and Engineering, 215, 110603. https://doi.org/10.1016/j.petrol.2022.110603
  • Zhang, Y., & Chai, J. R. (2020). Effect of surface morphology on fluid flow in rough fractures: A review. Journal of Natural Gas Science and Engineering, 79, 103343. https://doi.org/10.1016/j.jngse.2020.103343
  • Zhou, Z., Wang, Z., Li, S., Shen, Q., Chen, M., & Zheng, H. (2021). Determination of nonlinear seepage slope for dislocation interface by in situ tests. Bulletin of Engineering Geology and the Environment, 80(3), 2765–2775. https://doi.org/10.1007/s10064-020-02081-6
  • Zimmerman, R. W., Al-Yaarubi, A., Pain, C. C., & Grattoni, C. A. (2004). Non-linear regimes of fluid flow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 41(3), 384–384. https://doi.org/10.1016/j.ijrmms.2003.12.045
  • Zou, L., Jing, L., & Cvetkovic, V. (2017). Shear-enhanced nonlinear flow in rough-walled rock fractures. International Journal of Rock Mechanics and Mining Sciences, 97, 33–45. https://doi.org/10.1016/j.ijrmms.2017.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.