337
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Triaxial direct shear properties, cohesive damage behavior and shear constitutive model of sandstone under high confining pressure

, ORCID Icon, , &
Pages 1284-1299 | Received 15 May 2023, Accepted 10 Aug 2023, Published online: 24 Aug 2023

References

  • Bai, H., Li, W., Ding, Q., Wang, Q., & Yang, D. (2015). Interaction mechanism of the interface between a deep buried sand and a paleo-weathered rock mass using a high normal stress direct shear apparatus. International Journal of Mining Science and Technology, 25(4), 623–628. https://doi.org/10.1016/j.ijmst.2015.05.016
  • Ban, L., Du, W., Jin, T., Qi, C., & Li, X. (2021). A roughness parameter considering joint material properties and peak shear strength model for rock joints. International Journal of Mining Science and Technology, 31(3), 413–420. https://doi.org/10.1016/j.ijmst.2021.03.007
  • Bandis, S. C., Lumsden, A. C., & Barton, N. R. (1983). Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249–268. https://doi.org/10.1016/0148-9062(83)90595-8
  • Cao, W., Li, X., & Zhao, H. (2007). Damage constitutive model for strain-softening rock based on normal distribution and its parameter determination. Journal of Central South University of Technology, 14(5), 719–724. https://doi.org/10.1007/s11771-007-0137-6
  • Carey, J. W., Lei, Z., Rougier, E., Mori, H., & Viswanathan, H. (2015). Fracture-permeability behavior of shale. Journal of Unconventional Oil and Gas Resources, 11, 27–43. https://doi.org/10.1016/j.juogr.2015.04.003
  • Cheng, C., Li, X., Xu, N., & Zheng, B. (2019). Direct shear experimental study on the mobilized dilation behavior of granite in alxa candidate area for high-level radioactive waste disposal. Energies, 13(1), 122. https://doi.org/10.3390/en13010122
  • Crandall, D., Moore, J., Gill, M., & Stadelman, M. (2017). CT scanning and flow measurements of shale fractures after multiple shearing events. International Journal of Rock Mechanics and Mining Sciences, 100, 177–187. https://doi.org/10.1016/j.ijrmms.2017.10.016
  • Dindarloo, S. R., & Siami-Irdemoosa, E. (2016). A modified model of a single rock joint’s shear behavior in limestone specimens. International Journal of Mining Science and Technology, 26(4), 577–580. https://doi.org/10.1016/j.ijmst.2016.05.007
  • Ding, C., Zhang, Y., Teng, Q., Hu, D., Zhou, H., Shao, J., & Zhang, C. (2020). A method to experimentally investigate injection-induced activation of fractures. Journal of Rock Mechanics and Geotechnical Engineering, 12(6), 1326–1332. https://doi.org/10.1016/j.jrmge.2020.04.002
  • Du, S., Lu, Y., Luo, Z., & Huang, M. (2021). Combined test system for size effect of rock joint shear strength and its primary application research. Chinese Journal of Rock Mechanics and Engineering, 40, 1337–1349.(in Chinese)
  • Fang, Y., Elsworth, D., Ishibashi, T., & Zhang, F. (2018). Permeability evolution and frictional stability of fabricated fractures with specified roughness. Journal of Geophysical Research: Solid Earth, 123(11), 9355–9375. https://doi.org/10.1029/2018JB016215
  • Frash, L. P., Carey, J. W., Ickes, T., & Viswanathan, H. S. (2017). Caprock integrity susceptibility to permeable fracture creation. International Journal of Greenhouse Gas Control, 64, 60–72. https://doi.org/10.1016/j.ijggc.2017.06.010
  • Frash, L. P., Carey, J. W., Lei, Z., Rougier, E., Ickes, T., & Viswanathan, H. S. (2016). High-stress triaxial direct-shear fracturing of Utica shale and in situ X-ray microtomography with permeability measurement. Journal of Geophysical Research: Solid Earth, 121(7), 5493–5508. https://doi.org/10.1002/2016JB012850
  • Gill, M., Crandall, D., Moore, J., Mackey, P., & Brown, S. (2021). Gouge formation and dilation impacts to flow during fracture shearing. International Journal of Rock Mechanics and Mining Sciences, 147, 104920. https://doi.org/10.1016/j.ijrmms.2021.104920
  • Gong, F., Luo, S., Lin, G., & Li, X. (2020). Evaluation of shear strength parameters of rocks by preset angle shear, direct shear and triaxial compression tests. Rock Mechanics and Rock Engineering, 53(5), 2505–2519. https://doi.org/10.1007/s00603-020-02050-1
  • He, S., Lai, J., Zhong, Y., Wang, K., Xu, W., Wang, L., Liu, T., & Zhang, C. (2021). Damage behaviors, prediction methods and prevention methods of rockburst in 13 deep traffic tunnels in China. Engineering Failure Analysis, 121, 105178. https://doi.org/10.1016/j.engfailanal.2020.105178
  • Hu, Y., Mingnian, W., Zhilong, W., Qiling, W., & Dagang, L. (2020). Mechanical behavior and constitutive model of shotcrete–rock interface subjected to heat damage and variable temperature curing conditions. Construction and Building Materials, 263, 120171. https://doi.org/10.1016/j.conbuildmat.2020.120171
  • Hyman, J. D., Sweeney, M. R., Frash, L. P., Carey, J. W., & Viswanathan, H. S. (2021). Scale-bridging in three-dimensional fracture networks: Characterizing the effects of variable fracture apertures on network-scale flow channelization. Geophysical Research Letters, 48(19), e2021GL094400. https://doi.org/10.1029/2021GL094400
  • Jaeger, J. C. (1971). Friction of rocks and stability of rock slopes. Géotechnique, 21(2), 97–134. https://doi.org/10.1680/geot.1971.21.2.97
  • Jiang, Y., Li, B., Wang, C., Song, Z., & Yan, B. (2022). Advances in development of shear-flow testing apparatuses and methods for rock fractures: A review. Rock Mechanics Bulletin, 1(1), 100005. https://doi.org/10.1016/j.rockmb.2022.100005
  • Li, W., Frash, L. P., Welch, N. J., Carey, J. W., Meng, M., & Wigand, M. (2021). Stress-dependent fracture permeability measurements and implications for shale gas production. Fuel, 290, 119984. https://doi.org/10.1016/j.fuel.2020.119984
  • Liang, X., Tang, S., Tang, C., & Wang, J. (2021). The influence of water on the shear behaviors of intact sandstone. Bulletin of Engineering Geology and the Environment, 80(8), 6077–6091. https://doi.org/10.1007/s10064-021-02315-1
  • Lin, S. T., & Wong, H. T. (2015). Limits on spin-independent couplings of light dark matter WIMPs with a p-type point-contact germanium detector. Physics Procedia. 61, 119–123. https://doi.org/10.1016/j.phpro.2014.12.020
  • Liu, T., Li, J., Li, H., Li, X., & Li, N. (2017). Influence of shearing velocity on shear mechanical properties of planar filled joints. Rock and Soil Mechanics, 38, 1967–1973.
  • Liu, Z., Liu, B., Zhou, J., Shen, W., & Shao, J. (2022). Triaxial direct shear property and permeability change of interface between high-performance concrete and claystone with water injection and chemical leaching. Construction and Building Materials, 356, 129307. https://doi.org/10.1016/j.conbuildmat.2022.129307
  • Liu, Z., Shao, J., Zha, W., Xie, S., Bourbon, X., & Camps, G. (2021). Shear strength of interface between high-performance concrete and claystone in the context of a French radioactive waste repository project. Géotechnique, 71(6), 534–547. https://doi.org/10.1680/jgeot.19.P.098
  • Liu, Z., Wang, H., Li, Y., Wang, X., & Selvadurai, A. P. S. (2023). Triaxial compressive strength, failure, and rockburst potential of granite under high-stress and ground-temperature coupled conditions. Rock Mechanics and Rock Engineering, 56(2), 911–932. https://doi.org/10.1007/s00603-022-03066-5
  • Meng, B., Jing, H., Yang, S., Wu, Y., Wang, Y., & Huang, Y. (2021). Experimental investigation on shear behavior of intact sandstones under constant normal stiffness conditions. International Journal of Geomechanics, 21(2), 04020259. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001922
  • Ortlepp, W. D. (2000). Observation of mining-induced faults in an intact rock mass at depth. International Journal of Rock Mechanics and Mining Sciences, 37(1–2), 423–436. https://doi.org/10.1016/S1365-1609(99)00117-3
  • Patton, F. D. (1966). Multiple modes of shear failure in rock [Paper presentation]. 1st ISRM Congress (pp. 509–513).
  • Roshan, H., Chen, X., Pirzada, M. A., & Regenauer-Lieb, K. (2019). Permeability measurements during triaxial and direct shear loading using a novel X-ray transparent apparatus: Fractured shale examples from Beetaloo basin, Australia. NDT & E International, 107, 102129. https://doi.org/10.1016/j.ndteint.2019.102129
  • Saeb, S., & Amadei, B. (1992). Modelling rock joints under shear and normal loading. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(3), 267–278. https://doi.org/10.1016/0148-9062(92)93660-C
  • Samuelson, J., & Spiers, C. J. (2012). Fault friction and slip stability not affected by co2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks. International Journal of Greenhouse Gas Control, 11, S78–S90. https://doi.org/10.1016/j.ijggc.2012.09.018
  • Shen, N., Li, X., Zhang, Q., & Wang, L. (2021). Comparison of shear-induced gas transmissivity of tensile fractures in sandstone and shale under varying effective normal stresses. Journal of Natural Gas Science and Engineering, 95, 104218. https://doi.org/10.1016/j.jngse.2021.104218
  • Shen, Y., Wang, Y., Yang, Y., Sun, Q., Luo, T., & Zhang, H. (2019). Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Construction and Building Materials, 213, 156–166. https://doi.org/10.1016/j.conbuildmat.2019.04.078
  • Singalreddy, S. P., Cui, L., & Fang, K. (2022). Spatiotemporal evolution of thermo-hydro-mechanical-chemical processes in cemented paste backfill under interfacial loading. International Journal of Mining Science and Technology, 32(6), 1207–1217. https://doi.org/10.1016/j.ijmst.2022.10.002
  • Song, X., Chen, C., Xia, K., Yang, K., Chen, S., & Liu, X. (2018). Analysis of the surface deformation characteristics and strata movement mechanism in the main shaft area of Chengchao Iron Mine. Environmental Earth Sciences, 77(9), 335. https://doi.org/10.1007/s12665-018-7507-2
  • Tang, Z. C., Zhang, Z. F., & Jiao, Y.-Y. (2021). Three-dimensional criterion for predicting peak shear strength of matched discontinuities with different joint wall strengths. Rock Mechanics and Rock Engineering, 54(6), 3291–3307. https://doi.org/10.1007/s00603-021-02471-6
  • Tian, H. M., Chen, W. Z., Yang, D. S., & Yang, J. P. (2015). Experimental and numerical analysis of the shear behaviour of cemented concrete–rock joints. Rock Mechanics and Rock Engineering, 48(1), 213–222. https://doi.org/10.1007/s00603-014-0560-6
  • Walker, S. (2012). Deep thinking: Shaft design and safety for a new generation of mines. Engineering Mining Journal, 213, 38.
  • Wang, C., Liu, Z., Zhou, H., Wang, K., & Shen, W. (2023). A novel true triaxial test device with a high-temperature module for thermal-mechanical property characterization of hard rocks. European Journal of Environmental and Civil Engineering, 27(4), 1697–1714. https://doi.org/10.1080/19648189.2022.2092214
  • Wang, W., Yao, Q., Tang, C., Li, X., Chong, Z., & Xu, Q. (2021). Experimental study on the shear characteristics and weakening mechanism of water-bearing rock joints. Bulletin of Engineering Geology and the Environment, 80(10), 7653–7668. https://doi.org/10.1007/s10064-021-02390-4
  • Wang, Y., Jiao, Y., & Hu, S. (2021). Permeability evolution of an intact marble core during shearing under high fluid pressure. Geofluids, 2021, 8870890.
  • Wang, Z., Zhang, Q., & Zhang, W. (2022). A novel collaborative study of abnormal roof water inrush in coal seam mining based on strata separation and wing crack initiation. Engineering Failure Analysis, 142, 106762. https://doi.org/10.1016/j.engfailanal.2022.106762
  • Welch, N. J., Carey, J. W., Frash, L. P., Hyman, J. D., Hicks, W., Meng, M., Li, W., & Menefee, A. H. (2022). Effect of shear displacement and stress changes on fracture hydraulic aperture and flow anisotropy. Transport in Porous Media, 141(1), 17–47. https://doi.org/10.1007/s11242-021-01708-w
  • Welch, N. J., Frash, L. P., Harp, D. H., & Carey, J. W. (2020). Shear strength and permeability of the cement-casing interface. International Journal of Greenhouse Gas Control, 95, 102977. https://doi.org/10.1016/j.ijggc.2020.102977
  • Wenning, Q. C., Madonna, C., Kurotori, T., & Pini, R. (2019). Spatial mapping of fracture aperture changes with shear displacement using x-ray computerized tomography. Journal of Geophysical Research: Solid Earth, 124(7), 7320–7340. https://doi.org/10.1029/2019JB017301
  • Xia, C., Yu, Q., Qian, X., Gui, Y., & Zhuang, X. (2020). Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness. Rock and Soil Mechanics, 41, 57–66 + 77.(in Chinese)
  • Xie, H. (2017). Research framework and anticipated results of deep rock mechanics and mining theory. Advanced Engineering Sciences, 49, 1–16.(in Chinese)
  • Xie, H., Lu, J., Li, C., Li, M., & Gao, M. (2022). Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. International Journal of Mining Science and Technology, 32(5), 915–950. https://doi.org/10.1016/j.ijmst.2022.05.006
  • Xie, S., Lin, H., Chen, Y., Yong, R., Xiong, W., & Du, S. (2020). A damage constitutive model for shear behavior of joints based on determination of the yield point. International Journal of Rock Mechanics and Mining Sciences, 128, 104269. https://doi.org/10.1016/j.ijrmms.2020.104269
  • Xie, S., Lin, H., Wang, Y., Cao, R., Yong, R., Du, S., & Li, J. (2020). Nonlinear shear constitutive model for peak shear-type joints based on improved Harris damage function. Archives of Civil and Mechanical Engineering, 20(3), 95. https://doi.org/10.1007/s43452-020-00097-z
  • Zeng, Q.-D., Yao, J., & Shao, J. (2019). Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach. Computers and Geotechnics, 105, 51–68. https://doi.org/10.1016/j.compgeo.2018.09.010
  • Zhang, Q. (2020). Hydromechanical modeling of solid deformation and fluid flow in the transversely isotropic fissured rocks. Computers and Geotechnics, 128, 103812. https://doi.org/10.1016/j.compgeo.2020.103812
  • Zhang, Q., Wang, Z.-Y., Yin, Z.-Y., & Jin, Y.-F. (2022). A novel stabilized NS-FEM formulation for anisotropic double porosity media. Computer Methods in Applied Mechanics and Engineering, 401, 115666. https://doi.org/10.1016/j.cma.2022.115666
  • Zhang, Q., Li, X., Bai, B., Pei, L., Shi, L., & Wang, Y. (2019). Development of a direct-shear apparatus coupling with high pore pressure and elevated temperatures. Rock Mechanics and Rock Engineering, 52(9), 3475–3484. https://doi.org/10.1007/s00603-019-1735-y
  • Zhang, Q., Li, X., Zhou, Y., Shi, L., & Bai, B. (2019). Shear behavior of the Triassic sandstone in Sichuan under high pore pressure of H2O/CO2 conditions. Rock and Soil Mechanics, 40, 3028–3036.(in Chinese)
  • Zhu, T., & Huang, D. (2019). Experimental investigation of the shear mechanical behavior of sandstone under unloading normal stress. International Journal of Rock Mechanics and Mining Sciences, 114, 186–194. https://doi.org/10.1016/j.ijrmms.2019.01.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.