186
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of dry-wet cycles on compacted loess: from macroscopic to microscopic investigation

, &
Pages 1370-1393 | Received 11 May 2023, Accepted 26 Aug 2023, Published online: 08 Sep 2023

References

  • Ahmed, A., & Ugai, K. (2011). Environmental effects on durability of soil stabilized with recycled gypsum. Cold Regions Science and Technology, 66(2–3), 84–92. https://doi.org/10.1016/j.coldregions.2010.12.004
  • Aldaood, A., Bouasker, M., & Al-Mukhtar, M. (2014). Impact of wetting-drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils. Engineering Geology, 174, 11–21. https://doi.org/10.1016/j.enggeo.2014.03.002
  • Beckett, C. T. S., & Augarde, C. E. (2013). Prediction of soil water retention properties using pore-size distribution and porosity. Canadian Geotechnical Journal, 50(4), 435–450. https://doi.org/10.1139/cgj-2012-0320
  • Chen, H. E., Shan, W. C., & Jiang, Y. L. (2021). Dynamic characteristics of Xianyang loess based on microscopic analysis: A quantitative evaluation. Bulletin of Engineering Geology and the Environment, 80(10), 8247–8263. https://doi.org/10.1007/s10064-021-02432-x
  • Cheng, Y. X., Huo, A. D., Zhang, J., & Lu, Y. D. (2015). Early warning of meteorological geohazard in the Loess Plateau: A study in Huangling County of Shaanxi Province in China. Environmental Earth Sciences, 73(3), 1057–1065. https://doi.org/10.1007/s12665-014-3455-7
  • Committee HCAC. (2012). Huangling County Annals. Map Press.
  • Cui, K., Wu, G. P., Wang, X. L., & Chen, W. W. (2017). Behaviour of slate following freeze-thaw and dry-wet weathering processes. Quarterly Journal of Engineering Geology and Hydrogeology, 50(2), 117–125. https://doi.org/10.1144/qjegh2016-093
  • Della Vecchia, G., Jommi, C., & Romero, E. (2013). A fully coupled elastic-plastic hydromechanical model for compacted soils accounting for clay activity. International Journal for Numerical and Analytical Methods in Geomechanics, 37(5), 503–535. https://doi.org/10.1002/nag.1116
  • Della Vecchia, G., Dieudonne, A. C., Jommi, C., & Charlier, R. (2015). Accounting for evolving pore size distribution in water retention models for compacted clays. International Journal for Numerical and Analytical Methods in Geomechanics, 39(7), 702–723. https://doi.org/10.1002/nag.2326
  • Dong, H., Huang, R. Q., & Gao, Q. F. (2017). Rainfall infiltration performance and its relation to mesoscopic structural properties of a gravelly soil slope. Engineering Geology, 230, 1–10. https://doi.org/10.1016/j.enggeo.2017.09.005
  • Dong, J. G., Lyu, H. B., Xu, G. Y., & He, C. (2020). NMR-based study on soil pore structures affected by drying-wetting cycles. Arabian Journal for Science and Engineering, 45(5), 4161–4169. https://doi.org/10.1007/s13369-020-04409-6
  • Duan, Z., Li, Z.-Y., Wu, Y.-B., Niu, B., & Shen, R.-J. (2023). Mechanical and microscopic properties of soil according to the rate of increase in pore water pressure. Soil and Tillage Research, 225, 105530 10.1016/j.still.2022.105530
  • Goh, S. G., Rahardjo, H., & Leong, E. C. (2014). Shear strength of unsaturated soils under multiple drying-wetting cycles. Journal of Geotechnical and Geoenvironmental Engineering, 140(2), 06013001 https://doi.org/10.1061/(asce)gt.1943-5606.0001032
  • Guo, H., Yang, K. B., Wang, S. F., Guo, C., Nan, Y. L., & Tao, M. J. (2023). Effect of geogrid on dry-shrinkage cracking of loess. Frontiers in Earth Science, 11:1180045. https://doi.org/10.3389/feart.2023.1180045
  • Guo, J. J., Wang, K., Guo, T., Yang, Z. Y., & Zhang, P. (2019). Effect of dry-wet ratio on properties of concrete under sulfate attack. Materials, 12(17), 2755. https://doi.org/10.3390/ma12172755
  • Guo, Y. X., Ni, W. K., & Liu, H. S. (2021). Effects of dry density and water content on compressibility and shear strength of loess. Geomechanics and Engineering, 24, 419–430. https://doi.org/10.12989/gae.2021.24.5.419
  • Hao, S. P., & Pabst, T. (2023). Effect of freeze-thaw and wetting-drying cycles on the CBR, shear strength, stiffness and permanent deformation of crushed waste rocks. Road Materials and Pavement Design, 24(5), 1233–1253. https://doi.org/10.1080/14680629.2022.2064906
  • Hu, C. M., Yuan, Y. L., Mei, Y., Wang, X. Y., & Liu, Z. (2020). Comprehensive strength deterioration model of compacted loess exposed to drying-wetting cycles. Bulletin of Engineering Geology and the Environment, 79(1), 383–398. https://doi.org/10.1007/s10064-019-01561-8
  • Hu, M., Liu, Y. X., Ren, J. B., Wu, R. Z., & Zhang, Y. (2019). Laboratory test on crack development in mudstone under the action of dry-wet cycles. Bulletin of Engineering Geology and the Environment, 78(1), 543–556. https://doi.org/10.1007/s10064-017-1080-x
  • Hu, W. L., Cheng, W. C., Wen, S. J., & Rahman, M. M. (2021). Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties. CATENA, 203, 105361. https://doi.org/10.1016/j.catena.2021.105361
  • Huang, Z., Wei, B., Chen, Y., Zhang, J., & Liu, Y. (2021a). Experimental study on the ultrasonic nonlinear damage characteristics of expansive soil during constant amplitude dry-wet cycles. Scientia Iranica, 28, 2023–2036. https://doi.org/10.24200/sci.2021.55447.4225
  • Huang, Z., Zhang, H., Liu, B., Wei, B. X., & Wang, H. (2021b). Using CT to test the damage characteristics of the internal structure of expansive soil induced by dry-wet cycles. AIP Advances, 11(7), 075305. https://doi.org/10.1063/5.0057450
  • Jia, X. X., Shao, M. A., Zhu, Y. J., & Luo, Y. (2017). Soil moisture decline due to afforestation across the Loess Plateau, China. Journal of Hydrology, 546, 113–122. https://doi.org/10.1016/j.jhydrol.2017.01.011
  • Kenyon, W. E., Day, P. I., Straley, C., & Willemsen, J. F. (1988). A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Formation Evaluation, 3(03), 622–636. https://doi.org/10.2118/15643-PA
  • Kercheva, M., Ivanov, P., Dimitrov, E., Banov, M., & Atanassova, I. (2021). Soil water repellency characteristic curve of spolic technosols from the region of Maritsa-Iztok coal mine in Bulgaria. Geoderma Regional, 26, e00416. https://doi.org/10.1016/j.geodrs.2021.e00416
  • Khanlari, G., & Abdilor, Y. (2015). Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of upper red sandstones in central Iran. Bulletin of Engineering Geology and the Environment, 74(4), 1287–1300. https://doi.org/10.1007/s10064-014-0691-8
  • Kholghifard, M. (2020). Effective stress and compressibility of unsaturated clayey soil under drying and wetting cycles. Periodica Polytechnica Civil Engineering, 64, 999–1006. https://doi.org/10.3311/PPci.16166
  • Kim, E. K., Kang, Y. W., Christy, A. D., & Weatherington-Rice, J. (2010). Laboratory method for predicting boundary conditions of soil textures that support fracture development. Applied Engineering in Agriculture, 26, 973–982.
  • Koliji, A., Laloui, L., Cusinier, O., & Vulliet, L. (2006). Suction induced effects on the fabric of a structured soil. Transport in Porous Media, 64(2), 261–278. https://doi.org/10.1007/s11242-005-3656-3
  • Lehmkuhl, F., Nett, J. J., Potter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hosek, J., Markovic, S. B., Obreht, I., Sumegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., & Hambach, U. (2021). Loess landscapes of Europe-Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews, 215, 103496. https://doi.org/10.1016/j.earscirev.2020.103496
  • Lei, H. Y., Wang, L., Jia, R., Jiang, M. J., Zhang, W. D., & Li, C. Y. (2020). Effects of chemical conditions on the engineering properties and microscopic characteristics of Tianjin dredged fill. Engineering Geology, 269, 105548. https://doi.org/10.1016/j.enggeo.2020.105548
  • Leng, Y. Q., Peng, J. B., Wang, S., & Lu, F. (2021). Development of water sensitivity index of loess from its mechanical properties. Engineering Geology, 280, 105918. https://doi.org/10.1016/j.enggeo.2020.105918
  • Li, G. Y., Wang, F., Ma, W., Fortier, R., Mu, Y. H., Mao, Y. C., & Hou, X. (2018). Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles. Cold Regions Science and Technology, 151, 159–167. https://doi.org/10.1016/j.coldregions.2018.03.021
  • Li, P., Xie, W. L., Pak, R. Y. S., & Vanapalli, S. K. (2019). Microstructural evolution of loess soils from the Loess Plateau of China. CATENA, 173, 276–288. https://doi.org/10.1016/j.catena.2018.10.006
  • Lian, B. Q., Wang, X. G., Zhan, H. B., Wang, J. D., Peng, J. B., Gu, T. F., & Zhu, R. S. (2022). Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China. Engineering Geology, 300, 106589. https://doi.org/10.1016/j.enggeo.2022.106589
  • Liu, C., Tang, C. S., Shi, B., & Suo, W. B. (2013). Automatic quantification of crack patterns by image processing. Computers & Geosciences, 57, 77–80. https://doi.org/10.1016/j.cageo.2013.04.008
  • Liu, J. D., Tang, C. S., Zeng, H., & Shi, B. (2021). Evolution of desiccation cracking behavior of clays under drying-wetting cycles. Rock and Soil Mechanics, 42, 2763–2772. https://doi.org/10.16285/j.rsm.2021.0459
  • Liu, W. H., Tang, X. W., Yang, Q., & Li, W. G. (2015). Influence of drying/wetting cycles on the mechanical cyclic behaviours of silty clay. European Journal of Environmental and Civil Engineering, 19(7), 867–883. https://doi.org/10.1080/19648189.2014.974833
  • Mebarki, M., Kareche, T., Benyahia, S., Derfouf, F. E. M., Abou-Bekr, N., & Taibi, S. (2020). Volumetric behavior of natural swelling soil on drying-wetting paths. Application to the Boumagueur marl -Algeria. Studia Geotechnica et Mechanica, 42(3), 248–262. https://doi.org/10.2478/sgem-2019-0042
  • Moayed, R. Z., Alibolandi, M., & Lahiji, B. P. (2018). Impacts of freezing-thawing and wetting-drying cycles on a silt stabilized by lime and waste silica. Environmental Engineering and Management Journal, 17(12), 2905–2913. https://doi.org/10.30638/eemj.2018.291
  • Mokni, N., Romero, E., & Olivella, S. (2014). Chemo-hydro-mechanical behaviour of compacted Boom Clay: Joint effects of osmotic and matric suctions. Géotechnique, 64(9), 681–693. https://doi.org/10.1680/geot.13.P.130
  • Mu, Q. Y., Zhou, C., & Ng, C. W. W. (2020). Compression and wetting induced volumetric behavior of loess: Macro- and micro-investigations. Transportation Geotechnics, 23, 100345. https://doi.org/10.1016/j.trgeo.2020.100345
  • Musso, G., Scelsi, G., & Della Vecchia, G. (2022). Chemo-mechanical behaviour of non-expansive clays accounting for salinity effects. Géotechnique, 1–15. https://doi.org/10.1680/jgeot.21.00183
  • Nie, Y. P., Ni, W. K., Tuo, W. X., Wang, H. M., Yuan, K. Z., & Zhao, Y. (2023). Collapsibility deterioration mechanism and evaluation of compacted loess with sodium sulfate under drying-wetting cycles. Natural Hazards, 115(1), 971–991. https://doi.org/10.1007/s11069-022-05581-8
  • Niu, X. R., & Yao, Y. P. (2021). Resilient modulus experiment of subgrade soil on different wetting-drying and salt washing-supplying paths. Transportation Geotechnics, 28, 100512. https://doi.org/10.1016/j.trgeo.2021.100512
  • Pires, L. F., Borges, J. A. R., Rosa, J. A., Cooper, M., Heck, R. J., Passoni, S., & Roque, W. L. (2017). Soil structure changes induced by tillage systems. Soil and Tillage Research, 165, 66–79. https://doi.org/10.1016/j.still.2016.07.010
  • Romero, E., Della Vecchia, G., & Jommi, C. (2011). An insight into the water retention properties of compacted clayey soils. Géotechnique, 61(4), 313–328. https://doi.org/10.1680/geot.2011.61.4.313
  • Sarker, T. C., Incerti, G., Spaccini, R., Piccolo, A., Mazzoleni, S., & Bonanomi, G. (2018). Linking organic matter chemistry with soil aggregate stability: Insight from C-13 NMR spectroscopy. Soil Biology and Biochemistry, 117, 175–184. https://doi.org/10.1016/j.soilbio.2017.11.011
  • SGTM. (2019). National standards of People’s Republic of China. Standard for geotechnical testing method GB/T 50123-2019. China Planning Press.
  • Shao, S. J., Wang, Z., & Shao, S. (2022). Evaluation method for self-weight collapse deformation of tunnel foundations in thick loess. Soil Mechanics and Foundation Engineering, 59(1), 57–67. https://doi.org/10.1007/s11204-022-09784-w
  • Shao, X. X., Zhang, H. Y., & Tan, Y. (2018). Collapse behavior and microstructural alteration of remolded loess under graded wetting tests. Engineering Geology, 233, 11–22. https://doi.org/10.1016/j.enggeo.2017.11.025
  • Sun, Z.-X., Jiang, Y.-Y., Wang, Q.-B., & Owens, P. R. (2018). A fractal evaluation of particle size distributions in an eolian loess-paleosol sequence and the linkage with pedogenesis. CATENA, 165, 80–91. 10.1016/j.catena.2018.01.030
  • Sun, W. Y., Shao, Q. Q., Liu, J. Y., & Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. CATENA, 121, 151–163. https://doi.org/10.1016/j.catena.2014.05.009
  • Tamagnini, R. (2004). An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique, 54(3), 223–228. 10.1680/geot.2004.54.3.223
  • Tang, C.-S., Wang, D.-Y., Shi, B., & Li, J. (2016). Effect of wetting–drying cycles on profile mechanical behavior of soils with different initial conditions. CATENA, 139, 105–116. https://doi.org/10.1016/j.catena.2015.12.015
  • Tang, H., Liu, C. Y., Wang, N. A. Q., Li, H. H., Wu, G. N., Luo, J. Z., & Zeng, M. L. (2021). Influence of acidic substances on compression deformation characteristics of loess. Advances in Civil Engineering, 2021, 1–12. https://doi.org/10.1155/2021/6614391
  • Vandenberghe, R. E., Hus, J. J., & De Grave, E. (1998). Evidence from Mossbauer spectroscopy of neo-formation of magnetite/maghemite in the soils of loess/paleosol sequences in China. Hyperfine Interactions, 117(1/4), 359–369. https://doi.org/10.1023/A:1012695310761
  • Wan, Y., Xue, Q., & Liu, L. (2014). Study on the permeability evolution law and the micro-mechanism of CCL in a landfill final cover under the dry-wet cycle. Bulletin of Engineering Geology and the Environment, 73(4), 1089–1103. https://doi.org/10.1007/s10064-014-0604-x
  • Wang, D. Y., Tang, C. S., Cui, Y. J., Shi, B., & Li, J. (2016). Effects of wetting-drying cycles on soil strength profile of a silty clay in micro-penetrometer tests. Engineering Geology, 206, 60–70. https://doi.org/10.1016/j.enggeo.2016.04.005
  • Wang, T. H., Hsu, C. A., Lee, Y. J., Wang, C. F., Chen, C. W., & Dong, C. D. (2021). Impact of microporous structures of esterified cellulose filter papers on Co(II) rejection in cross-flow microfiltration. Separation and Purification Technology, 279, 119738. https://doi.org/10.1016/j.seppur.2021.119738
  • Wu, Y. J., Xu, Y., Zhang, X. D., Lu, Y. T., Chen, G., Wang, X. D., & Song, B. J. (2021). Experimental study on vacuum preloading consolidation of landfill sludge conditioned by Fenton’s reagent under varying filter pore size. Geotextiles and Geomembranes, 49(1), 109–121. https://doi.org/10.1016/j.geotexmem.2020.09.008
  • Xiao, T., Li, P., & Shao, S. J. (2022). Fractal dimension and its variation of intact and compacted loess. Powder Technology, 395, 476–490. https://doi.org/10.1016/j.powtec.2021.09.069
  • Xie, W-l., Li, P., Zhang, M-s., Cheng, T-e., & Wang, Y. (2018). Collapse behavior and microstructural evolution of loess soils from the Loess Plateau of China. Journal of Mountain Science, 15(8), 1642–1657. 10.1007/s11629-018-5006-2
  • Xu, P. P., Qian, H., Zhang, Q. Y., Li, W. Q., & Ren, W. H. (2022). Investigating saturated hydraulic conductivity of remolded loess subjected to CaCl2 solution of varying concentrations. Journal of Hydrology, 612, 128135. https://doi.org/10.1016/j.jhydrol.2022.128135
  • Xue, Y., Miao, F. S., Wu, Y. P., & Dias, D. (2022). Dynamic stability assessment of reservoir colluvial landslide using a hypoplastic clay constitutive model considering the effects of drying-wetting cycles on the hydro-fluctuation belt. Engineering Geology, 307, 106791. https://doi.org/10.1016/j.enggeo.2022.106791
  • Yang, X. J., Wang, J. M., Hou, D. G., Zhu, C., & He, M. C. (2018). Effect of dry-wet cycling on the mechanical properties of rocks: A laboratory-scale experimental study. Processes, 6(10), 199. https://doi.org/10.3390/pr6100199
  • Ye, H., Chu, C. F., Xu, L., Guo, K. L., & Li, D. (2018). Experimental studies on drying-wetting cycle characteristics of expansive soils improved by industrial wastes. Advances in Civil Engineering, 2018, 1–9. https://doi.org/10.1155/2018/2321361
  • Ye, W. J., Bai, Y., Cui, C. Y., & Duan, X. (2020). Deterioration of the internal structure of loess under dry-wet cycles. Advances in Civil Engineering, 2020, 1–17. https://doi.org/10.1155/2020/8881423
  • Yi, F., Li, H., Zhang, J., Jiang, X. T., & Guan, M. C. (2019). Experimental studies on interfacial shear characteristics between polypropylene woven fabrics. Materials, 12(22), 3649. https://doi.org/10.3390/ma12223649
  • Yin, S. P., Jing, L., Yin, M. T., & Wang, B. (2019). Mechanical properties of textile reinforced concrete under chloride wet-dry and freeze-thaw cycle environments. Cement and Concrete Composites, 96, 118–127. https://doi.org/10.1016/j.cemconcomp.2018.11.020
  • Yu, B., Fan, W., Dijkstra, T. A., Wei, Y., & Deng, L. (2022). Pore structure evolution due to loess collapse: A comparative study using MIP and X-ray micro-CT. Geoderma, 424, 115955. https://doi.org/10.1016/j.geoderma.2022.115955
  • Yuan, B. X., Li, Z. H., Chen, Y. M., Ni, H., Zhao, Z. Q., Chen, W. J., & Zhao, J. (2022). Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer. Chemosphere, 286(Pt 1), 131652. https://doi.org/10.1016/j.chemosphere.2021.131652
  • Zha, F. S., Huang, K., Kang, B., Sun, X. G., Su, J. W., Li, Y. F., & Lu, Z. T. (2022). Deterioration characteristic and constitutive model of red-bed argillaceous siltstone subjected to drying-wetting cycles. Lithosphere, 2022(1): 8786210. https://doi.org/10.2113/2022/8786210
  • Zhang, Y. C., Wang, Y. H., Zhao, N. N., & Wang, T. Y. (2016). Experimental and stress-strain equation investigation on compressive strength of raw and modified soil in loess plateau. Advances in Materials Science and Engineering, 2016, 1–10. https://doi.org/10.1155/2016/2681038
  • Zhang, Y. Y., & Ye, W. J. (2018). Effect of dry-wet cycle on the formation of loess slope spalling hazards. Civil Engineering Journal, 4(4), 785–795. https://doi.org/10.28991/cej-0309133
  • Zhao, M., Chen, L. Y., Wang, S. Y., & Wu, H. G. (2020). Experimental study of the microstructure of loess on its macroscopic geotechnical properties of the Baozhong railway subgrade in Ningxia, China. Bulletin of Engineering Geology and the Environment, 79, 4829–4840. https://doi.org/10.1007/s10064-020-01816-9
  • Zhao, X. Z., Li, L. C., Yang, B. B., & Yang, C. D. (2022). Application of fractal to evaluate the drying shrinkage behavior of soil composites from recycled waste clay brick. Fractal and Fractional, 7(1), 25. https://doi.org/10.3390/fractalfract7010025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.