217
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Flexible barrier and flow-driven woody debris: an experimental investigation of their interaction

ORCID Icon, &
Pages 1614-1636 | Received 08 Jul 2023, Accepted 29 Sep 2023, Published online: 15 Oct 2023

References

  • Albaba, A., Lambert, S., Kneib, F., Chareyre, B., & Nicot, F. (2017). DEM Modeling of a flexible barrier impacted by a dry granular flow. Rock Mechanics and Rock Engineering, 50(11), 3029–3048. https://doi.org/10.1007/s00603-017-1286-z
  • Berger, C., Denk, M., Graf, C., Stieglitz, L., & Wendeler, C. (2021). Practical guide for debris flow and hillslope debris flow protection nets. WSL Berichte, 113, 267.
  • Chevalier, B., Combe, G., & Villard, P. (2007). Load transfers and arching effects in granular soil layer [Paper presentation]. Proceedings of the 18th Congrès Français De Mécanique (p. 6), Grenoble, France, 27–31 August 2007.
  • Choi, C. E., & Goodwin, G. R. (2020). Interaction between granular flows and flexible obstacles: A grain-scale investigation. Computers and Geotechnics, 128, 103800. https://doi.org/10.1016/j.compgeo.2020.103800
  • De Cicco, P. N. , Paris, E., Solari, L., & Ruiz-Villanueva, V. (2020). Bridge pier shape influence on wood accumulation: Outcomes from flume experiments and numerical modelling. Journal of Flood Risk Management, 13(2), e12599. https://doi.org/10.1111/jfr3.12599
  • Comiti, F., Lucía, A., & Rickenmann, D. (2016). Large wood recruitment and transport during large floods: A review. Geomorphology, 269, 23–39. https://doi.org/10.1016/j.geomorph.2016.06.016
  • Faure, Y., Farkouh, B., Delmas, P., & Nancey, A. (1999). Analysis of geotextile filter behaviour after 21 years in Valcros dam. Geotextiles and Geomembranes, 17(5–6), 353–370. https://doi.org/10.1016/S0266-1144(99)00010-2
  • Follett, E., Schalko, I., & Nepf, H. (2020). Momentum and energy predict the backwater rise generated by a large wood jam, geophys. Geophysical Research Letters, 47(17). e2020GL089346. https://doi.org/10.1029/2020GL089346
  • Gasser, E., Schwarz, M., Simon, A., Perona, P., Phillips, C., Hübl, J., & Dorren, L. (2019). A review of modeling the effects of vegetation on large wood recruitment processes in mountain catchments. Earth Science Reviews, 194, 350–373. https://doi.org/10.1016/j.earscirev.2019.04.013
  • Hofmann, R., & Berger, S. (2022). Impacts of gravitational mass movements on protective structures—rock avalanches/granular flow. Geosciences, 12(6), 223. https://doi.org/10.3390/geosciences12060223
  • ICOLD. (2019). Blockage of reservoir spillways, intakes and bottom outlets by floating debris, international commission on large dams. https://www.icoldchile.cl/boletines/176.pdf [Accessed 2023-05-22].
  • Kong, Y., Guan, M., Li, X., Zhao, J., & Yan, H. (2022). Bi-linear laws govern the impacts of debris flows, debris avalanches, and rock avalanches on flexible barrier. Journal of Geophysical Research: Earth Surface, 127, e2022–006870. https://doi.org/10.1029/2022JF00687
  • Kong, Y., Li, X., Zhao, J., & Guan, M. (2023). Load–deflection of flexible ring-net barrier in resisting debris flows. Géotechnique, 1–13. https://doi.org/10.1680/jgeot.22.00135
  • Lambert, S., Bourrier, F., Ceron-Mayo, A.-R., Dugelas, L., Dubois, F., & Piton, G. (2023). Small-scale modeling of flexible barriers. I: Mechanical similitude of the structure. Journal of Hydraulic Engineering, 149(3), 04022043. https://doi.org/10.1061/JHEND8.HYENG-13070
  • Lange, D., & Bezzola, G. (2006). Schwemmholz - probleme und lösungsansätze [driftwood - problems and solutions]. https://ethz.ch/content/dam/ethz/special-interest/baug/vaw/vaw-dam/documents/das-institut/mitteilungen/2000-2009/188.pdf [Accessed 2023-05-22].
  • Lucia, A., Comiti, F., Borga, M., Cavalli, M., & Marchi, L. (2015). Dynamics of large wood during a flash flood in two mountain catchments. Natural Hazards and Earth System Sciences, 15(8), 1741–1755. https://doi.org/10.5194/nhess-15-1741-2015
  • Ng, C. W. W., Song, D., Choi, C. E., Liu, L. H. D., Kwan, J. S. H., Koo, R. C. H., & Pun, W. K. (2017). Impact mechanisms of granular and viscous flows on rigid and flexible barriers. Canadian Geotechnical Journal, 54(2), 188–206. https://doi.org/10.1139/cgj-2016-0128
  • Okamoto, T., Takebayashi, H., Sanjou, M., Suzuki, R., & Toda, K. (2020). Log jam formation at bridges and the effect on floodplain flow: A flume experiment. Journal of Flood Risk Management, 13(S1).e12562. https://doi.org/10.1111/jfr3.12562
  • Piton, G., Ceron Mayo, A. R., & Lambert, S. (2023). Small-scale modeling of flexible barriers. II: Interactions with large wood. Journal of Hydraulic Engineering, 149(3), 04022044. https://doi.org/10.1061/JHEND8.HYENG-13071
  • Piton, G., Horiguchi, T., Marchal, L., & Lambert, S. (2020). Open check dams and large wood: Head losses and release conditions. Natural Hazards and Earth System Sciences, 20(12), 3293–3314. https://doi.org/10.5194/nhess-20-3293-2020
  • Piton, G., & Recking, A. (2016). Design of sediment traps with open check dams. II: Woody debris. Journal of Hydraulic Engineering, 142(2), 1–17. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001049
  • Piton, G., & Recking, A. (2019). Steep bedload-laden flows: Near critical? Journal of Geophysical Research: Earth Surface, 124(8), 2160–2175. https://doi.org/10.1029/2019JF005021
  • Rimböck, A. (2004). Design of rope net barriers for woody debris entrapment: Introduction of a design concept [Paper presentation]. Proceedings of 10th Interpraevent Symposium (pp. 265–276), Riva del Garda, Italy. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2004_3_VII-265.pdf [Accessed 2023-05-22]
  • Rimböck, A., & Strobl, T. (2002). Loads on rope net constructions for woody debris entrapment in torrents [Paper presentation]. Proceedings of Interpraevent Symposium (pp. 797–807), Matsumoto, Japan, 14–18 October 2002. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2002_2_797.pdf [Accessed 2023-05-22]
  • Di Risio, M. D., & Sammarco, P. (2020). Effects of floaters on the free surface profiles of river flows. Environmental Fluid Mechanics, 20(3), 527–537. https://doi.org/10.1007/s10652-019-09710-z
  • Ruiz‐Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren‐Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz‐Ramos, M., Stoffel, M., & Wohl, E. (2019). Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694–1709. https://doi.org/10.1002/esp.4603
  • Ruiz-Villanueva, V., Bodoque, J. M., Díez-Herrero, A., & Bladé, E. (2014). Large wood transport as significant influence on flood risk in a mountain village. Natural Hazards, 74(2), 967–987. https://doi.org/10.1007/s11069-014-1222-4
  • Schalko, I., Schmocker, L., Weitbrecht, V., & Boes, R. M. (2018). Backwater rise due to large wood accumulations. Journal of Hydraulic Engineering, 144(9). 04018056 https://doi.org/10.1061/(ASCE)HY.1943-7900.0001501
  • Schalko, I., Lageder, C., Schmocker, L., Weitbrecht, V., & Boes, R. M. (2019a). Laboratory flume experiments on the formation of spanwise large wood accumulation Part I: Effect on backwater rise. Water Resources Research. 55(6), 4854–4870. https://doi.org/10.1029/2018WR024649
  • Schalko, I., Lageder, C., Schmocker, L., Weitbrecht, V., & Boes, R. M. (2019b). Laboratory flume experiments on the formation of spanwise large wood accumulations Part II: Effect on local scour, Water. Water Resources Research, 55(6), 4871–4885. https://doi.org/10.1029/2019WR024789
  • Schmocker, L., & Hager, W. H. (2013). Scale modeling of wooden debris accumulation at a debris rack. Journal of Hydraulic Engineering, 139(8), 827–836. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000714
  • Schmocker, L., & Weitbrecht, V. (2013). Driftwood: Risk analysis and engineering measures. Journal of Hydraulic Engineering, 139(7), 683–695. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000728
  • Song, D., Choi, C. E., Ng, C. W. W., & Zhou, G. G. D. (2018). Geophysical flows impacting a flexible barrier: Effects of solid-fluid interaction. Landslides, 15(1), 99–110. https://doi.org/10.1007/s10346-017-0856-1
  • Wendeler, C. (2016). Debris-flow protection systems for mountain torrents. Basic principles for planning and calculation of flexible barriers (p. 267). WSL Berichte, 44. Swiss Federal Institute for Forest, Snow and Landscape Research WSL.
  • Wendeler, C., & Volkwein, A. (2015). Laboratory tests for the optimization of mesh size for flexible debris-flow barriers. Natural Hazards and Earth System Sciences, 15(12), 2597–2604. https://doi.org/10.5194/nhess-15-2597-2015
  • Wendeler, C., Volkwein, A., McArdell, B. W., & Bartelt, P. (2019). Load model for designing flexible steel barriers for debris flow mitigation. Canadian Geotechnical Journal, 56(6), 893–910. https://doi.org/10.1139/cgj-2016-0157

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.