128
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Strain hardening composite made of LC3 binder and mineral impregnated carbon yarn: effect of crystalline admixture on mechanical characteristics and microstructure

, &
Pages 1678-1695 | Received 24 Apr 2023, Accepted 18 Oct 2023, Published online: 31 Oct 2023

References

  • Aldea, C.-M., Song, W.-J., Popovics, J. S., Shah, S. Pand., e. al. (2000). Extent of healing of cracked normal strength concrete. Journal of Materials in Civil Engineering, 12(1), 92–96. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(92)
  • Baghban, M. H., & Mahjoub, R. (2020). Natural kenaf fiber and LC3 binder for sustainable fiber-reinforced cementitious composite: A review. Applied Sciences, 10(1), 357. https://doi.org/10.3390/app10010357
  • Baoju, L., Youjun, X., Shiqiong, Z., & Jian, L. (2001). Some factors affecting early compressive strength of steam-curing concrete with ultrafine fly ash. Cement and Concrete Research. 31(10), 1455–1458. https://doi.org/10.1016/S0008-8846(01)00559-2
  • Cuenca, E., & Ferrara, L. (2017). Self-healing capacity of fiber reinforced cementitious composites. State of the art and perspectives. KSCE Journal of Civil Engineering, 21(7), 2777–2789. https://doi.org/10.1007/s12205-017-0939-5
  • Cuenca, E., Tejedor, A., & Ferrara, L. (2018). A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles in fiber reinforced concrete. Construction and Building Materials, 179, 619–632. https://doi.org/10.1016/j.conbuildmat.2018.05.261
  • Darquennes, A., Olivier, K., Benboudjema, F., Gagné, R. (2016). Self-healing at early-age, a way to improve the chloride resistance of blast-furnace slag cementitious materials. Construction and Building Materials, 113, 1017–1028. https://doi.org/10.1016/j.conbuildmat.2016.03.087
  • De Belie, N., Gruyaert, E., Al‐Tabbaa, A., Antonaci, P., Baera, C., Bajare, D., Darquennes, A., Davies, R., Ferrara, L., Jefferson, T., Litina, C., Miljevic, B., Otlewska, A., Ranogajec, J., Roig‐Flores, M., Paine, K., Lukowski, P., Serna, P., Tulliani, J., … Jonkers, H. M. (2018). A review of self‐healing concrete for damage management of structures. Advanced Materials Interfaces, 5(17), 1800074. https://doi.org/10.1002/admi.201800074
  • Dhandapani, Y., & Santhanam, M. (2017). Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cement and Concrete Composites, 84, 36–47. https://doi.org/10.1016/j.cemconcomp.2017.08.012
  • Edvarsen, C. (1999). Water permeability and autogenous healing of cracks in concrete. ACI Materials Journal, 96(4), 448–454.
  • Erdoǧdu, S., & Kurbetci, S. (1998). Optimum heat treatment cycle for cements of different type and composition. Cement and Concrete Research. 28(11), 1595–1604. https://doi.org/10.1016/S0008-8846(98)00134-3
  • Ferrara, L., Krelani, V., & Carsana, M. (2014). A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 68, 535–551. https://doi.org/10.1016/j.conbuildmat.2014.07.008
  • Ferrara, L., Van Mullem, T., Alonso, M., Antonaci, P., Borg, R., Cuenca, E., Jefferson, A., Ng, P., Peled, A., Roig-Flores, M., Sánchez, M., Schroefl, C., Serna, P., Snoeck, D., Tulliani, J., & De Belie, N. (2018). Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Construction and Building Materials, 167, 115–142. https://doi.org/10.1016/j.conbuildmat.2018.01.143
  • Gartner, E., & Sui, T. (2018). Alternative cement clinkers. Cement and Concrete Research. 114, 27–39. https://doi.org/10.1016/j.cemconres.2017.02.002
  • Ho, D. W. S., Chua, C. W., & Tam, C. T. (2003). Steam-cured concrete incorporating mineral admixtures. Cement and Concrete Research. 33(4), 595–601. https://doi.org/10.1016/S0008-8846(02)01028-]
  • Kjellsen, K. O., & Detwiler, R. J. (1992). Reaction kinetics of Portland cement mortars hydrated at different temperatures. Cement and Concrete Research. 22(1), 112–120. https://doi.org/10.20595/jjbf.19.0_3
  • Kosmatka, S. H., Panarese, W. C., & Allen, G. E. (1991). Design and control of concrete mixtures. 5th ed. Canadian Portland Cement Association.
  • Liebscher, M., Zhao, J., Wilms, G., Michel, A., Wilhelm, K., & Mechtcherine, V. (2022). Influence of roller configuration on the fiber–matrix distribution and mechanical properties of continuously produced, mineral-impregnated carbon fibers (MCFs). Fibers, 10(5), 42. https://doi.org/10.3390/fib10050042
  • Ling, H., & Chunxiang, Q. (2017). Effects of self-healing cracks in bacterial concrete on the transmission of chloride during electromigration. Construction and Building Materials, 144, 406–411. https://doi.org/10.1016/j.conbuildmat.2017.02.160
  • Liu, B., Xie, Y., & Li, J. (2005). Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials. Cement and Concrete Research. 35(5), 994–998. https://doi.org/10.1016/j.cemconres.2004.05.044
  • Maltais, Y., & Marchand, J. (1997). Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars. Cement and Concrete Research. 27(7), 1009–1020. https://doi.org/10.1016/S0008-8846(97)00098-7
  • Mechtcherine, V., Michel, A., Liebscher, M., Schneider, K., & Großmann, C. (2020). Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: Material and automation perspectives. Automation in Construction, 110, 103002. https://doi.org/10.1016/j.autcon.2019.103002
  • Miller, S. A., John, V. M., Pacca, S. A., & Horvath, A. (2018). Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 114, 115–124. https://doi.org/10.1016/j.cemconres.2017.08.026.)
  • Moon, H. Y., Shin, D. G., & Choi, D. S. (2007). Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system. Construction and Building Materials, 21(2), 362–369. https://doi.org/10.1016/j.conbuildmat.2005.08.012
  • Pfeifer, D. W., & Marusin, S. (1991). Energy efficient accelerated curing of concrete, a state-of-the-art review (Technical Report No. 1). Prestressed Concrete Institute.
  • Savija, B., & Schlangen, E. (2016). Autogeneous healing and chloride ingress in cracked concrete. Heron, 61(1), 15–32.
  • Schneider, K., Michel, A., Liebscher, M., & Mechtcherine, V. (2018). Verbundverhalten mineralisch gebundener und polymergebundener Bewehrungsstrukturen aus Carbonfasern bei Temperaturen bis 500 °C. Beton- und Stahlbetonbau, 113(12), 886–894. https://doi.org/10.1002/best.201800072
  • Schneider, K., Michel, A., Liebscher, M., Terreri, L., Hempel, S., & Mechtcherine, V. (2019). Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures. Cement and Concrete Composites, 97, 68–77. https://doi.org/10.1016/j.cemconcomp.2018.12.006
  • Schroefl, C., Reichardt, M., Mechtcherine, V., & Deegan, P. (2023). Floating breakwater pontoon cast with carbon textile reinforcement-based ultra high durability concrete: Materials development and testing, and implementation in the North Atlantic (Irelands west coast). SMARTINCS’23. MATEC Web of Conferences, 378, 08001. https://doi.org/10.1051/matecconf/202337808001
  • Scrivener, K., Martirena, F., Bishnoi, S., & Maity, S. (2018). Calcined clay limestone cements (LC3). Cement and Concrete Research. 114, 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017
  • Shi, C., Qu, B., & Provis, J. L. (2019). Recent progress in low-carbon binders. Cement and Concrete Research. 122, 227–250. https://doi.org/10.1016/j.cemconres.2019.05.009
  • Snoeck, D., & De Belie, N. (2012). Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres. Biosystems Engineering, 111(4), 325–335. https://doi.org/10.1016/j.biosystemseng.2011.12.005
  • Vaasudevaa, B. V., Dhandapani, Y., & Santhanam, M. (2021). Performance evaluation of limestone-calcined clay (LC2) combination as a cement substitute in concrete systems subjected to short-term heat curing. Construction and Building Materials, 302, 124121. https://doi.org/10.1016/j.conbuildmat.2021.124121
  • Van Tittelboom, K., Maes, M., & De Belie, N. (2014). The efficiency of self-healing cementitious materials by means of encapsulated polyurethane in chloride containing environments. Construction and Building Materials, 71, 528–537. https://doi.org/10.1016/j.conbuildmat.2014.08.053
  • Wang, L., Ur Rehman, N., Curosu, I., Zhu, Z., Beigh, M. A. B., aLiebscher, M., Chen, L., Tsang, D. C., Hempel, S., & Mechtcherine, V. (2021). On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement and Concrete Research, 144, 106421. https://doi.org/10.1016/j.cemconres.2021.106421
  • Weng, T.-L., & Cheng, A. (2014). Influence of curing environment on concrete with crystalline Admixture. Monatshefte für Chemie – Chemical Monthly, 145(1), 195–200. https://doi.org/10.1007/s00706-013-0965-z
  • Xypex Chemical Corporation. (2014). Concrete technology. Crystalline technology for enhancing the performance of precast concrete in marine and sewer structures. (Special Print).
  • Yu, J., Wu, H. L., & Leung, C. K. Y. (2020). Feasibility of using ultrahigh-volume limestone-calcined clay blend to develop sustainable medium-strength engineered cementitious composites (ECC). Journal of Cleaner Production, 262, 121343. https://doi.org/10.1016/j.jclepro.2020.121343
  • Zhang, Z. G., & Zhang, Q. (2017). Self-healing ability of engineered cementitious composites (ECC) under different exposure environments. Construction and Building Materials. 156, 142–151. https://doi.org/10.1016/j.conbuildmat.2017.08.166
  • Zhang, Z., Zhang, Q., & Li, V. C. (2019). Multiple-scale investigations on self-healing induced mechanical property recovery of ECC. Cement and Concrete Composites, 103, 293–302. https://doi.org/10.1016/j.cemconcomp.2019.05.014
  • Zhao, J., Liebscher, M., Köberle, T., Almanla, A., & Mechtcherine, V. (2023). Mineral-impregnated carbon-fiber (MCF) composites made with differently sized fly-ash geopolymers for durable light weight and high temperature applications. Cement and Concrete Composites, 138, 104950. https://doi.org/10.1016/j.cemconcomp.2023.104950
  • Zhimin, H., Junzhe, L., & Kangwu, Z. (2012). Influence of mineral admixtures on the short and long-term performance of steam-cured concrete. Energy Procedia, 16, 836–841. https://doi.org/10.1016/j.egypro.2012.01.134
  • Zhutovsky, S., & Kovler, K. (2012). Effect of internal curing on durability-related properties of high performance concrete. Cement and Concrete Research, 42(1), 20–26. https://doi.org/10.1016/j.cemconres.2011.07.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.