63
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical modeling of trench adjacent to a shallow foundation for mitigating reverse fault rupture effects

, ORCID Icon &
Pages 1850-1874 | Received 10 Jun 2023, Accepted 06 Nov 2023, Published online: 14 Nov 2023

References

  • Ahmadi, M., Moosavi, M., & Jafari, M. K. (2018). Experimental investigation of reverse fault rupture propagation through wet granular soil. Engineering Geology, 239, 229–240. https://doi.org/10.1016/j.enggeo.2018.03.032
  • Ahmed, W., & Bransby, M. F. (2009). Interaction of shallow foundations with reverse faults. Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 914–924. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000072
  • Anastasopoulos, I., Callerio, A., Bransby, M. F., Davies, M. C. R., El Nahas, A., Faccioli, E., Gazetas, G., Masella, A., Paolucci, R., Pecker, A., & Rossignol, E. (2008). Numerical analyses of fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 645–675. https://doi.org/10.1007/s10518-008-9078-1
  • Anastasopoulos, I., Gazetas, G., Bransby, M. F., Davies, M. C. R., & El Nahas, A. (2007). Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 943–958. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(943)
  • Anastasopoulos, I., Gazetas, G., Bransby, M. F., Davies, M. C., & El Nahas, A. (2009). Normal fault rupture interaction with strip foundations. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 359–370. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(359)
  • Anastasopoulos, I., & Jones, L. (2019). On the development of novel mitigation techniques against faulting–induced deformation: “Smart” barriers and sacrificial members. Soil Dynamics and Earthquake Engineering, 124, 297–306. https://doi.org/10.1016/j.soildyn.2018.04.052
  • Ashtiani, M., Ghalandarzadeh, A., Mahdavi, M., & Hedayati, M. (2015). Centrifuge modeling of geotechnical mitigation measures for shallow foundations subjected to reverse faulting. Canadian Geotechnical Journal, 55(8), 1130–1143. https://doi.org/10.1139/cgj-2017-0093
  • Ashtiani, M., Ghalandarzadeh, A., & Towhata, I. (2015). Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture. Canadian Geotechnical Journal, 53(3), 505–519. https://doi.org/10.1139/cgj-2014-0444
  • Ashtiani, M., Nowkandeh, M. J., & Kayhani, A. (2021). Numerical modeling of the interaction of normal fault and shallow embedded foundation. Bulletin of Earthquake Engineering, 19(12), 4805–4832. https://doi.org/10.1007/s10518-021-01172-3
  • Baziar, M. H., Hasanaklou, S. H., & Azizkandi, A. S. (2019). Evaluation of EPS wall effectiveness to mitigate shallow foundation deformation induced by reverse faulting. Bulletin of Earthquake Engineering, 17(6), 3095–3117. https://doi.org/10.1007/s10518-019-00581-9
  • Bransby, M. F., Davies, M. C. R., El Nahas, A., & Nagaoka, S. (2008). Centrifuge modelling of reverse fault–foundation interaction. Bulletin of Earthquake Engineering, 6(4), 607–628. https://doi.org/10.1007/s10518-008-9080-7
  • Bray, J. D., Ashmawy, A., Mukhopadhyay, G., & Gath, E. M. (1993). Use of geosynthetics to mitigate earthquake fault rupture propagation through compacted fill. In Proceedings of the Geosynthetics’ 93 Conference (Vol. 1, pp. 379–392).
  • Bray, J. D., Seed, R. B., Cluff, L. S., & Seed, H. B. (1994). Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3), 543–561. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(543)
  • Charles, J. A., & Skinner, H. D. (2004). Settlement and tilt of low-rise buildings. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 157(2), 65–75. https://doi.org/10.1680/geng.2004.157.2.65
  • Chiang, J., Michel, E. E., Yang, K. H., & Zornberg, J. G. (2023). Mitigation of reverse faulting in foundation soils using geosynthetic-encased granular columns. Transportation Geotechnics. 42, 101067. ‌ https://doi.org/10.1016/j.trgeo.2023.101067
  • Cole, D. A., & Lade, P. V. (1984). Influence zones in alluvium over dip-slip faults. Journal of Geotechnical Engineering, 110(5), 599–615. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:5(599)
  • Faccioli, E., Anastasopoulos, I., Gazetas, G., Callerio, A., & Paolucci, R. (2008). Fault rupture–foundation interaction: Selected case histories. Bulletin of Earthquake Engineering, 6(4), 557–583. https://doi.org/10.1007/s10518-008-9089-y
  • Fadaee, M., Ezzatyazdi, P., Anastasopoulos, I., & Gazetas, G. (2016). Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design implications. Soil Dynamics and Earthquake Engineering, 89, 248–261. https://doi.org/10.1016/j.soildyn.2016.04.007
  • Garcia, F. E., & Bray, J. D. (2022). Discrete element analysis of earthquake surface fault rupture through layered media. Soil Dynamics and Earthquake Engineering, 152, 107021. https://doi.org/10.1016/j.soildyn.2021.107021
  • Garcia, F., & Bray, J. D. (2019). Discrete-element analysis of influence of granular soil density on earthquake surface fault rupture interaction with rigid foundations. Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019093. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002163
  • Hazeghian, M., & Soroush, A. (2020). DEM simulations to study the effects of the ground surface geometry on dip-slip faulting through granular soils. European Journal of Environmental and Civil Engineering, 24(7), 861–879. https://doi.org/10.1080/19648189.2018.1428225
  • Hung, W. Y., Soegianto, D. P., Wang, Y. H., & Huang, J. X. (2022). Reverse fault slip through soft rock and sand strata by centrifuge modeling tests. Acta Geotechnica, 17(8), 3337–3356. https://doi.org/10.1007/s11440-021-01447-8
  • Loli, M., Kourkoulis, R., & Gazetas, G. (2018). Physical and numerical modeling of hybrid foundations to mitigate seismic fault rupture effects. Journal of Geotechnical and Geoenvironmental Engineering, 144(11), 04018083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001966
  • Mortazavi Zanjani, M., & Soroush, A. (2019). Numerical modelling of fault rupture propagation through layered sands. European Journal of Environmental and Civil Engineering, 23(9), 1139–1155. https://doi.org/10.1080/19648189.2017.1344148
  • Naeij, M., & Soroush, A. (2021). Comprehensive 3D numerical study on interaction between structure and dip-slip faulting. Soil Dynamics and Earthquake Engineering, 140, 106285. https://doi.org/10.1016/j.soildyn.2020.106285
  • Nowkandeh, M. J., & Ashtiani, M. (2023). Cushioned helical-piled raft systems to mitigate hazards associated with normal faulting. Soil Dynamics and Earthquake Engineering, 166, 107773. https://doi.org/10.1016/j.soildyn.2023.107773
  • Oettle, N. K., & Bray, J. D. (2013). Geotechnical mitigation strategies for earthquake surface fault rupture. Journal of Geotechnical and Geoenvironmental Engineering, 139(11), 1864–1874. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000933
  • Oettle, N. K., & Bray, J. D. (2017). Numerical procedures for simulating earthquake fault rupture propagation. International Journal of Geomechanics, 17(1), 04016025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000661
  • Rankin, W. J. (1988). Ground movements resulting from urban tunnelling: Predictions an effect. Geological Society, London, Engineering Geology Special Publications, 5(1), 79–92. https://doi.org/10.1144/GSL.ENG.1988.005.01.06
  • Sadra, V., Ghalandarzadeh, A., & Ashtiani, M. (2020). Use of a trench adjacent to a shallow foundation as a mitigation measure for hazards associated with reverse faulting. Acta Geotechnica, 15(11), 3167–3182. https://doi.org/10.1007/s11440-020-00950-8
  • Sowers, G. F. (1962). Shallow foundations. In G. A. Leonards (Ed.), Foundation engineering (pp. 525–632). McGraw-Hill.
  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/BSSA0840040974
  • Yao, C., & Takemura, J. (2019). Using laser displacement transducer scanning technique in centrifuge modeling of reverse fault–foundation interaction. Soil Dynamics and Earthquake Engineering, 121, 219–232. https://doi.org/10.1016/j.soildyn.2019.03.018
  • Yao, C., Yan, Q., Sun, M., Dong, W., & Guo, D. (2020). Rigid diaphragm wall with a relief shelf to mitigate the deformations of soil and shallow foundations subjected to normal faulting. Soil Dynamics and Earthquake Engineering, 137, 106264. https://doi.org/10.1016/j.soildyn.2020.106264
  • Yao, C., Zhang, Y., He, C., Yang, W., Yan, Q., & Guo, D. (2023). New insights into normal fault rupture propagation in sand. Acta Geotechnica, 18(7), 3435–3449. https://doi.org/10.1007/s11440-023-01796-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.