101
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Pullout behavior of geogrid reinforcement in calcareous sand

ORCID Icon, , , ORCID Icon, &
Pages 1945-1967 | Received 06 Jun 2023, Accepted 14 Nov 2023, Published online: 19 Dec 2023

References

  • Abdi, M. R., Zandieh, A. R., Mirzaeifar, H., & Arjomand, M. A. (2021). Influence of geogrid type and coarse grain size on pull out behaviour of clays reinforced with geogrids embedded in thin granular layers. European Journal of Environmental and Civil Engineering, 25(12), 2161–2180. https://doi.org/10.1080/19648189.2019.1619627
  • Abdi, M. R., Mirzaeifar, H., & Asgardun, Y. (2022). Novel soil-pegged geogrid (PG) interactions in pull-out loading conditions. Geotextiles and Geomembranes, 50(4), 764–778. https://doi.org/10.1016/j.geotexmem.2022.04.001
  • ASTM D5321. (2008). Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. ASTM International.
  • ASTM D4595. (2011). Standard test method for tensile properties of geotextiles by the wide-width strip method. ASTM International.
  • ASTM D6706-01. (2013). Standard test method for measuring geosynthetic pullout resistance in soil. ASTM International.
  • ASTM D698-07. (2007). Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM International.
  • Bao, C. G., Wang, M. Y., & Ding, J. H. (2013). Mechanism of soil reinforced with geogrid. Journal of Yangtze River Scientific Research Institute, 30(01), 34–41.
  • Chen, J. F., Akosah, S., Ma, C., & Gidigasu, S. S. (2023). Large-scale triaxial tests of reinforced coral sand with different grain size distributions. Marine Georesources & Geotechnology, 41(5), 544–554. https://doi.org/10.1080/1064119X.2022.2068462
  • Chen, J. F., Gu, Z. A., Rajesh, S., & Yu, S. B. (2021). Pullout Behavior of triaxial geogrid embedded in a transparent soil. International Journal of Geomechanics, 21(3), 04021003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001936
  • Chen, C., Duan, Y. D., Rui, R., & Wang, L. (2021). Study of single and two-layer geogrid reinforced ballasted trackbed using pull-out test and discrete element method. Rock and Soil Mechanics, 42(04), 954–962.
  • Chen, J. F., Zhang, W., & Xue, J. F. (2017). Zoning of reinforcement forces in geosynthetic reinforced cohesionless soil slopes. Geosynthetics International, 24(6), 565–574. https://doi.org/10.1680/jgein.17.00023
  • Ding, X. M., Luo, Z. G., & Ou, Q. (2022). Mechanical property and deformation behavior of geogrid reinforced calcareous sand. Geotextiles and Geomembranes, 50(4), 618–631. https://doi.org/10.1016/j.geotexmem.2022.03.002
  • Ferreira, F. B., Vieira, C. S., Lopes, M. L., & Carlos, D. M. (2016). Experimental investigation on the pullout behaviour of geosynthetics embedded in a granite residual soil. European Journal of Environmental and Civil Engineering, 20(9), 1147–1180. https://doi.org/10.1080/19648189.2015.1090927
  • Gao, Y. F., Hang, L., He, J., Zhang, F., & Van Paassen, L. (2021). Pullout behavior of geosynthetic reinforcement in biocemented soils. Geotextiles and Geomembranes, 49(3), 646–656. https://doi.org/10.1016/j.geotexmem.2020.10.028
  • Goodarzi, S., & Shahnazari, H. (2019). Strength enhancement of geotextile-reinforced carbonate sand. Geotextiles and Geomembranes, 47(2), 128–139. https://doi.org/10.1016/j.geotexmem.2018.12.004
  • Han, J., Jiang, Y., & Xu, C. (2018). Recent advances in geosynthetic-reinforced retaining walls for highway applications. Frontiers of Structural and Civil Engineering, 12(2), 239–247. https://doi.org/10.1007/s11709-017-0424-8
  • Kayadelen, C., Önal, T. Ö., & Altay, G. (2018). Experimental study on pull-out response of geogrid embedded in sand. Measurement, 117, 390–396. https://doi.org/10.1016/j.measurement.2017.12.024
  • Kong, D., & Fonseca, J. (2018). Quantification of the morphology of shelly carbonate sands using 3D image. Géotechnique, 68(3), 249–261. https://doi.org/10.1680/jgeot.16.P.278
  • Liu, F. Y., Ying, M., Yuan, G., Wang, J., Gao, Z., & Ni, J. (2021). Particle shape effects on the cyclic shear behaviour of the soil–geogrid interface. Geotextiles and Geomembranes, 49(4), 991–1003. https://doi.org/10.1016/j.geotexmem.2021.01.008
  • Lu, L., Ma, S. W., Wang, Z. J., & Zhang, Y. (2021). Experimental study of the performance of geosynthetics-reinforced soil walls under differential settlements. Geotextiles and Geomembranes, 49(1), 97–108. https://doi.org/10.1016/j.geotexmem.2020.09.007
  • Miao, C. X., Jia, Y. F., Zhang, J., & Zhao, J. B. (2020). DEM simulation of the pullout behavior of geogrid-stabilized ballast with the optimization of the coordination between aperture size and particle diameter. Construction and Building Materials, 255, 119359. https://doi.org/10.1016/j.conbuildmat.2020.119359
  • Moraci, N., & Recalcati, P. (2006). Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes, 24(4), 220–242. https://doi.org/10.1016/j.geotexmem.2006.03.001
  • Moraci, N., Cardile, G., Gioffrè, D., Mandaglio, M. C., Calvarano, L. S., & Carbone, L. (2014). Soil geosynthetic interaction: Design parameters from experimental and theoretical analysis. Transportation Infrastructure Geotechnology, 1(2), 165–227. https://doi.org/10.1007/s40515-014-0007-2
  • Morsy, A. M., & Zornberg, J. G. (2021). Soil-reinforcement interaction: Stress regime evolution in geosynthetic-reinforced soils. Geotextiles and Geomembranes, 49(1), 323–342. https://doi.org/10.1016/j.geotexmem.2020.08.007
  • Palmeira, E. M. (2009). Soil–geosynthetic interaction: Modelling and analysis. Geotextiles and Geomembranes, 27(5), 368–390. https://doi.org/10.1016/j.geotexmem.2009.03.003
  • Rezvani, R. (2019). Shearing response of geotextile-reinforced calcareous soils using monotonic triaxial tests. Marine Georesources & Geotechnology, 38(2), 238–249. https://doi.org/10.1080/1064119X.2019.1566936
  • Ren, F. F., Huang, Q. Q., Liu, Q., & Wang, G. (2022). Numerical study on the pull-out behaviour of planar reinforcements with consideration of residual interfacial shear strength. Transportation Geotechnics, 35, 100766. https://doi.org/10.1016/j.trgeo.2022.100766
  • Sadat Taghavi, S. H., & Mosallanezhad, M. (2017). Experimental analysis of large-scale pullout tests conducted on polyester anchored geogrid reinforcement systems. Canadian Geotechnical Journal, 54(5), 621–630. https://doi.org/10.1139/cgj-2016-0365
  • Shahnazari, H., & Rezvani, R. (2013). Effective parameters for the particle breakage of calcareous sands: An experimental study. Engineering Geology, 159, 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005
  • Sukmak, G., Sukmak, P., Joongklang, A., Udomchai, A., Horpibulsuk, S., Arulrajah, A., & Yeanyong, C. (2020). Predicting pullout resistance of bearing reinforcement embedded in cohesive-frictional soils. Journal of Materials in Civil Engineering, 32(3), 04019379. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003043
  • Suksiripattanapong, C., Horpibulsuk, S., Chinkulkijniwat, A., & Chai, J. C. (2013). Pullout resistance of bearing reinforcement embedded in coarse-grained soils. Geotextiles and Geomembranes, 36, 44–54. https://doi.org/10.1016/j.geotexmem.2012.10.008
  • Suksiripattanapong, C., Horpibulsuk, S., Udomchai, A., Arulrajah, A., & Tangsutthinon, T. (2020). Pullout resistance mechanism of bearing reinforcement embedded in coarse-grained soils: Laboratory and field investigations. Transportation Geotechnics, 22, 100297. https://doi.org/10.1016/j.trgeo.2019.100297
  • Van Impe, P. O., Van Impe, W. F., Manzotti, A., Mengé, P., Van den Broeck, M., & Vinck, K. (2015). Compaction control and related stress–strain behaviour of off-shore land reclamations with calcareous sands. Soils and Foundations, 55(6), 1474–1486. https://doi.org/10.1016/j.sandf.2015.10.012
  • Wang, H. L., Chen, R. P., Liu, Q. W., Kang, X., & Wang, Y. W. (2019). Soil–geogrid interaction at various influencing factors by pullout tests with applications of fbg sensors. Journal of Materials in Civil Engineering, 31(1), 04018342. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002537
  • Wang, J. Q., Zhang, L. L., Xue, J. F., & Tang, Y. (2018). Load-settlement response of shallow square footings on geogrid-reinforced sand under cyclic loading. Geotextiles and Geomembranes, 46(5), 586–596. https://doi.org/10.1016/j.geotexmem.2018.04.009
  • Wang, J. Q., Xu, L. J., Xue, J. F., & Tang, Y. (2020). Laboratory study on geogrid reinforced soil wall with modular facing under cyclic strip loading. Arabian Journal of Geoences, 13(11), 398–406.
  • Wang, X., Liu, J. Q., Cui, J., Wang, X. Z., Shen, J. H., & Zhu, C. Q. (2021). Particle breakage characteristics of a foundation filling material on island-reefs in the South China Sea. Construction and Building Materials, 306, 124690. https://doi.org/10.1016/j.conbuildmat.2021.124690
  • Wang, X. Z., Ding, H. Z., Meng, Q. S., Wei, H. Z., Wu, Y., & Zhang, Y. (2021). Engineering characteristics of coral reef and site assessment of hydraulic reclamation in the South China Sea. Construction and Building Materials, 300, 124263. https://doi.org/10.1016/j.conbuildmat.2021.124263
  • Wang, J. Q., Zhang, L. L., Tang, Y., & Huang, S. B. (2021). Influence of reinforcement-arrangements on dynamic response of geogrid-reinforced foundation under repeated loading. Construction and Building Materials, 274, 122093. https://doi.org/10.1016/j.conbuildmat.2020.122093
  • Wang, X. Z., Jiao, Y. Y., Wang, R., Hu, M. J., Meng, Q. S., & Tan, F. Y. (2011). Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea. Engineering Geology, 120(1-4), 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011
  • Wang, X. Z., Weng, Y. L., Wei, H. Z., Meng, Q. S., & Hu, M. J. (2019). Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea. Engineering Geology, 261, 105274. https://doi.org/10.1016/j.enggeo.2019.105274
  • Xiao, C. Z., Gao, S., Liu, H. B., & Du, Y. Q. (2021). Case history on failure of geosynthetics-reinforced soil bridge approach retaining walls. Geotextiles and Geomembranes, 49(6), 1585–1599. https://doi.org/10.1016/j.geotexmem.2021.08.001
  • Xu, L. J., Wang, X. Z., Wang, R., Zhu, C. Q., & Liu, X. P. (2022). Physical and mechanical properties of calcareous soils: A review. Marine Georesources & Geotechnology, 40(6), 751–766. https://doi.org/10.1080/1064119X.2021.1927270
  • Xu, L. J., Wang, R., Xu, D. S., Wang, X. Z., Meng, Q. S., & Zhu, C. Q. (2022). Review of particle breakage measurement methods for calcareous sand. Advances in Civil Engineering, 2022, 1–13. https://doi.org/10.1155/2022/6477197
  • Xu, L. J., Wang, R., Xu, D. S., Wang, J. Q., Wang, X. Z., & Meng, Q. S. (2022). Interface Shear behavior of geogrid-reinforced calcareous sand under large-scale monotonic direct shear. International Journal of Geosynthetics and Ground Engineering, 8(5), 66. https://doi.org/10.1007/s40891-022-00403-0
  • Xu, L. J., Wang, R., Liu, Q. B., Chen, J. F., Wang, X. Z., & Meng, Q. S. (2023). Effect of particle size distribution on monotonic direct shear characteristics of geotextile/geogrid-calcareous sand interface. Applied Ocean Research, 137, 103601. https://doi.org/10.1016/j.apor.2023.103601
  • Yang, S., Shen, X., Liu, H., Ge, H., & Rui, X. (2019). Gradation affects basic mechanical characteristics of Chinese calcareous sand as airport subgrade of reefs. Marine Georesources & Geotechnology, 38(6), 706–715. https://doi.org/10.1080/1064119X.2019.1614122
  • Yu, D., Ye, J., & Yao, L. (2020). Prediction of the long-term settlement of the structures built on a reclaimed coral reef island: An aircraft runway. Bulletin of Engineering Geology and the Environment, 79(9), 4549–4564. https://doi.org/10.1007/s10064-020-01866-z
  • Zhao, Y. F., Yang, G. Q., Wang, Z., & Yuan, S. P. (2022). Research on the effect of particle size on the interface friction between geogrid reinforcement and soil. Sustainability, 14(22), 15443. https://doi.org/10.3390/su142215443
  • Zhou, J., Chen, J. F., Xue, J. F., & Wang, J. Q. (2012). Micro-mechanism of the interaction between sand and geogrid transverse ribs. Geosynthetics International, 19(6), 426–437. https://doi.org/10.1680/gein.12.00028
  • Zhu, C. Q., Liu, H. F., Wang, X., Meng, Q. S., & Wang, R. (2017). Engineering geotechnical investigation for coral reef site of the cross-sea bridge between Malé and Airport Island. Ocean Engineering, 146, 298–310. https://doi.org/10.1016/j.oceaneng.2017.09.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.