156
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Long term performance of concrete using accelerated carbonation curing: an effective CCUS technique

, ORCID Icon &
Pages 2138-2159 | Received 21 May 2023, Accepted 09 Dec 2023, Published online: 25 Dec 2023

References

  • Abdalhmid, J. M., Ashour, A. F., & Sheehan, T. (2019). Long-term drying shrinkage of self-compacting concrete: Experimental and analytical investigations. Construction & Building Materials, 202, 825–837. https://doi.org/10.1016/j.conbuildmat.2018.12.152
  • Abdullahi, M., Odigure, J. O., Kovo, A. S., & Abdulkareem, A. S. (2016). Characterization and predictive reaction model for cement–sand–kaolin composite for CO2 sequestration. Journal of CO2 Utilization, 16, 169–181. https://doi.org/10.1016/j.jcou.2016.06.008
  • Ahmad, S. (2018). Accelerated carbon dioxide sequestration. In Carbon dioxide sequestration in cementitious construction materials. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102444-7.00005-8
  • Ahmad, S., Assaggaf, R. A., Maslehuddin, M., Al-Amoudi, O. S. B., Adekunle, S. K., & Ali, S. I. (2017). Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing. Construction & Building Materials, 136, 565–573. https://doi.org/10.1016/j.conbuildmat.2017.01.069
  • ASTM C1585-13. (2013). Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. ASTM International, 41(147), 1–6.
  • ASTM C642-13. (2008). Standard test method for density, absorption, and voids in hardened concrete. https://doi.org/10.1520/C0642-13.5
  • ASTM International (2013). ASTM G109-07, standard test method for determining the effects of chemical admixtures on corrosion of embedded stel reinforcement in concrete exposed to chloride environments.
  • ASTM Standard C 150. (2002). Standard specification for Portland cement. ASTM Standard Book, 04, 1–13. www.astm.org.
  • Bertos, M. F., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. 112, 193–205. https://doi.org/10.1016/j.jhazmat.2004.04.019
  • BIS:1237. (2012). Cement concrete flooring tiles—Specification. Bureau of Indian Standards.
  • BIS 383. (2016). Coarse and fine aggregate for concrete—Specification. Bureau of Indian Standards.
  • BIS 516. (2004). IS 516-1959: Method of tests for strength of concrete. Bureau of Indian Standards.
  • BIS 8112. (2013). Ordinary Portland cement, 43 grade-specification. Bureau of Indian Standards.
  • Drouet, E., Poyet, S., Le Bescop, P., Torrenti, J. M., & Bourbon, X. (2019). Carbonation of hardened cement pastes: Influence of temperature. Cement & Concrete Research, 115(October 2018), 445–459. https://doi.org/10.1016/j.cemconres.2018.09.019
  • El-Hassan, H., Shao, Y., & Ghouleh, Z. (2013). Reaction products in carbonation-cured lightweight concrete. 25(June), 799–809. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000638
  • François, R., Laurens, S., & Deby, F. (2018). Steel corrosion in reinforced concrete. Corrosion and its consequences for reinforced concrete structures, 1–41. https://doi.org/10.1016/b978-1-78548-234-2.50001-9
  • Fukushima, Y., Yoshizaki, F., & Tomosawa, K. T. (1998). Elation-ship between neutralization depth and concentration distribution of CaCO3–Ca(OH)2 in carbonated concrete. Advances in Concrete Technology, 179, 347–364.
  • Goodbrake, C. J., Young, J. F., & Berger, R. L. (1979). Reaction of beta‐dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor. Journal of the American Ceramic Society, 62(3–4), 168–171. https://doi.org/10.1111/j.1151-2916.1979.tb19046.x
  • Goyal, S., & Sharma, D. (2020). CO2 sequestration on cement. In Start-up creation. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-819946-6.00006-0
  • Groves, G. W., Brough, A., Richardson, I. G., & Dobson, C. M. (1991). Progressive changes in the structure of hardened. Journal of the American Ceramic Society, 74(11), 2891–2896. https://doi.org/10.1111/j.1151-2916.1991.tb06859.x
  • Gu, T., Guo, X., Li, Z., Cheng, X., Fan, X., Korayem, A., & Duan, W. H. (2017). Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions. Construction & Building Materials, 130, 92–102. https://doi.org/10.1016/j.conbuildmat.2016.10.117
  • Guleria, H., Purnima,  Tiwari, A. K., & Goyal, S. (2021). Performance of organic and inorganic functional groups as corrosion inhibitors in concrete experiencing extreme corrosive environment. Indian Concrete Journal, 95(4), 37–39.
  • Hasanbeigi, A., Price, L., & Lin, E. (2012). Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable & Sustainable Energy Reviews, 16(8), 6220–6238. https://doi.org/10.1016/j.rser.2012.07.019
  • IEA. (2022). Cement–analysis-IEA. https://www.iea.org/reports/cement
  • IS 10262. (2019). Concrete mix proportioning—Guidelines. In Bureau of Indian Standards (BIS). Vol. Second Rev (Issue January).
  • IS 1786. (2008). High strength deformed steel bars and wires for concrete reinforcement. Bureau of Indian Standards.
  • IS 5816. (1999). Indian standard splitting tensile strength of concrete-method of test (first revision) (pp. 1–14). Bureau of Indian Standards.
  • Jang, J. G., & Lee, H. K. (2016). Cement and concrete research microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cement & Concrete Research, 82, 50–57. https://doi.org/10.1016/j.cemconres.2016.01.001
  • Jiang, D., Li, X., Lv, Y., Li, C., Zhang, T., He, C., Leng, D., & Wu, K. (2022). Early-age hydration process and autogenous shrinkage evolution of high performance cement pastes. Journal of Building Engineering, 45(October 2021), 103436. https://doi.org/10.1016/j.jobe.2021.103436
  • Jiang, K., Ashworth, P., Zhang, S., Liang, X., Sun, Y., & Angus, D. (2019). China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renewable & Sustainable Energy Reviews, 119(November), 109601. https://doi.org/10.1016/j.rser.2019.109601
  • Kashef-Haghighi, S., Shao, Y., & Ghoshal, S. (2015). Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing. Cement & Concrete Research, 67, 1–10. https://doi.org/10.1016/j.cemconres.2014.07.020
  • Keith, D. W., Holmes, G., St. Angelo, D., & Heidel, K. (2018). A process for capturing CO2 from the atmosphere. Joule, 2(8), 1573–1594. https://doi.org/10.1016/j.joule.2018.05.006
  • Koch, G., Varney, J., Thompson, N., Moghissi, O., Gould, M., & Payer, J. (2016). International measures of prevention, application, and economics of corrosion technologies study. NACE International Impact, February, 1–216.
  • Koelbl, B. S., van den Broek, M. A., van Ruijven, B. J., Faaij, A. P. C., & van Vuuren, D. P. (2014). Uncertainty in the deployment of carbon capture and storage (CCS): A sensitivity analysis to techno-economic parameter uncertainty. International Journal of Greenhouse Gas Control, 27, 81–102. https://doi.org/10.1016/j.ijggc.2014.04.024
  • Kou, S. C., Zhan, B. J., & Poon, C. S. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement & Concrete Composites, 45, 22–28. https://doi.org/10.1016/j.cemconcomp.2013.09.008
  • Leemann, A., & Moro, F. (2017). Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity. Materials & Structures, 50(1), 1–14. https://doi.org/10.1617/s11527-016-0917-2
  • Li, W., Hua, L., Shi, Y., Wang, P., Liu, Z., Cui, D., & Sun, X. (2022). Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Applied Clay Science, 229(November 2021), 106674. https://doi.org/10.1016/j.clay.2022.106674
  • Liang, C., Lu, N., Ma, H., Ma, Z., & Duan, Z. (2020). Carbonation behavior of recycled concrete with CO2-curing recycled aggregate under various environments. Journal of CO2 Utilization, 39(February), 101185. https://doi.org/10.1016/j.jcou.2020.101185
  • Liu, B., Qin, J., Shi, J., Jiang, J., Wu, X., & He, Z. (2021). New perspectives on utilization of CO2 sequestration technologies in cement-based materials. Construction & Building Materials, 272, 121660. https://doi.org/10.1016/j.conbuildmat.2020.121660
  • Liu, B., Shi, J., Liang, H., Jiang, J., Yang, Y., & He, Z. (2020). Synergistic enhancement of mechanical property of the high replacement low-calcium ultrafine fly ash blended cement paste by multiple chemical activators. Journal of Building Engineering, 32, 101520. https://doi.org/10.1016/j.jobe.2020.101520
  • Mei, K., Gu, T., Zheng, Y., Zhang, L., Zhao, F., Gong, P., Huang, S., Zhang, C., & Cheng, X. (2021). Effectiveness and microstructure change of alkali-activated materials during accelerated carbonation curing. Construction & Building Materials, 274, 122063. https://doi.org/10.1016/j.conbuildmat.2020.122063
  • Mo, L., & Panesar, D. K. (2012). Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO. Cement & Concrete Research, 42(6), 769–777. https://doi.org/10.1016/j.cemconres.2012.02.017
  • Monkman, S., Kenward, P. A., Dipple, G., MacDonald, M., & Raudsepp, M. (2018). Activation of cement hydration with carbon dioxide. Journal of Sustainable Cement-Based Materials, 7(3), 160–181. https://doi.org/10.1080/21650373.2018.1443854
  • Monkman, S., & MacDonald, M. (2017). On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. Journal of Cleaner Production, 167, 365–375. https://doi.org/10.1016/j.jclepro.2017.08.194
  • Monkman, S., & Shao, Y. (2010). Carbonation curing of slag–cement concrete for binding CO2 and improving performance. April, 296–304. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000018
  • Morandeau, A., Thiéry, M., & Dangla, P. (2014). Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cement & Concrete Research, 56, 153–170. https://doi.org/10.1016/j.cemconres.2013.11.015
  • Najafi, E., & Khanbilvardi, R. (2019). Evaluating global crop distribution in the 21st century to maximize food production. AGU Fall Meeting Abstracts, 2019, B31F-2440. https://ui.adsabs.harvard.edu/abs/2019AGUFM.B31F2440N
  • Neves Junior, A., Toledo Filho, R. D., De Moraes Rego Fairbairn, E., & Dweck, J. (2015). The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes. Construction & Building Materials, 77, 448–454. https://doi.org/10.1016/j.conbuildmat.2014.12.072
  • NOAA. (2022). Global monitoring laboratory, carbon cycle greenhouse gases: Trends in atmospheric CO2. NOAA. https://gml.noaa.gov/ccgg/trends/gl_trend.html%0Ahttps://gml.noaa.gov/ccgg/trends_ch4/%0Ahttps://gml.noaa.gov/ccgg/trends/
  • Pan, X., Shi, C., Farzadnia, N., Hu, X., & Zheng, J. (2019). Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing. Cement & Concrete Composites, 99, 89–99. https://doi.org/10.1016/j.cemconcomp.2019.03.006
  • Panesar, D. K., & Mo, L. (2013). Cement and concrete composites properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing. Cement & Concrete Composites, 38, 40–49. https://doi.org/10.1016/j.cemconcomp.2013.03.009
  • Pu, Q., Jiang, L., Xu, J., Chu, H., Xu, Y., & Zhang, Y. (2012). Evolution of pH and chemical composition of pore solution in carbonated concrete. Construction & Building Materials, 28(1), 519–524. https://doi.org/10.1016/j.conbuildmat.2011.09.006
  • Qian, L., Jiaxiang, L., & Liqian, Q. (2016). Effects of temperature and carbonation curing on the mechanical properties of steel slag-cement binding materials. Construction & Building Materials, 124, 999–1006. https://doi.org/10.1016/j.conbuildmat.2016.08.131
  • Räsänen, V., & Penttala, V. (2004). The pH measurement of concrete and smoothing mortar using a concrete powder suspension. Cement & Concrete Research, 34(5), 813–820. https://doi.org/10.1016/j.cemconres.2003.09.017
  • Rilem, J., & 154-Emc, T. (2020). Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method.
  • Rostami, V., Shao, Y., & Boyd, A. J. (2011). Durability of concrete pipes subjected to combined steam and carbonation curing. Construction & Building Materials, 25(8), 3345–3355. https://doi.org/10.1016/j.conbuildmat.2011.03.025
  • Rostami, V., Shao, Y., & Boyd, A. J. (2012). Carbonation curing versus steam curing for precast concrete production. Journal of Materials in Civil Engineering, 24(9), 1221–1229. https://doi.org/10.1061/(asce)mt.1943-5533.0000462
  • Shao, Y., Mirza, M. S., & Wu, X. (2006). CO2 sequestration using calcium–silicate concrete. Canadian Journal of Civil Engineering, 1, 776–784. https://doi.org/10.1139/l05-105
  • Sharma, D., & Goyal, S. (2018). Accelerated carbonation curing of cement mortars containing cement kiln dust: An effective way of CO2 sequestration and carbon footprint reduction. Journal of Cleaner Production, 192, 844–854. https://doi.org/10.1016/j.jclepro.2018.05.027
  • Sharma, D., & Goyal, S. (2020). Effect of accelerated carbonation curing on near surface properties of concrete. European Journal of Environmental and Civil Engineering, 26(4), 1300–1321. https://doi.org/10.1080/19648189.2019.1707714
  • Shi, C., He, F., & Wu, Y. (2012). Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures. Construction & Building Materials, 26(1), 257–267. https://doi.org/10.1016/j.conbuildmat.2011.06.020
  • Shi, C., Liu, M., He, P., & Ou, Z. (2012). Factors affecting kinetics of CO2 curing of concrete. Journal of Sustainable Cement-Based Materials, 1(1–2), 24–33. https://doi.org/10.1080/21650373.2012.727321
  • Shi, C., Wang, D., He, F., & Liu, M. (2012). Weathering properties of CO2-cured concrete blocks. Resources, Conservation & Recycling, 65, 11–17. https://doi.org/10.1016/j.resconrec.2012.04.005
  • Siddique, S., Naqi, A., & Jang, J. G. (2020). Influence of water to cement ratio on CO2 uptake capacity of belite-rich cement upon exposure to carbonation curing. Cement & Concrete Composites, 111(March), 103616. https://doi.org/10.1016/j.cemconcomp.2020.103616
  • Sidhu, G. S., Guleria, H., Sharma, D., & Goyal, S. (2023). Strength and permeation characteristics of pervious concrete subjected to accelerated carbonation curing. Journal of Sustainable Cement-Based Materials, 12(10), 1242–1254. https://doi.org/10.1080/21650373.2023.2213241
  • Tang, W., Zhan, B., Wu, C., & Kou, S. C (2021). Experimental investigation and mathematical modelling of the carbon dioxide sequestration of cement pastes during pressurized CO2 curing. Construction & Building Materials, 302(August), 124383. https://doi.org/10.1016/j.conbuildmat.2021.124383
  • Tiwari, A. K., Goyal, S., Luxami, V. P. (2023). Influence of corrosion inhibitors on two different concrete systems under combined chloride and carbonated environment. Structures, 48(August 2022), 717–735. https://doi.org/10.1016/j.istruc.2022.12.093
  • Villain, G., Thiery, M., & Platret, G. (2007). Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cement & Concrete Research, 37(8), 1182–1192. https://doi.org/10.1016/j.cemconres.2007.04.015
  • Wang, D., Xiao, J., & Duan, Z. (2022). Strategies to accelerate CO2 sequestration of cement-based materials and their application prospects. Construction & Building Materials, 314(PB), 125646. https://doi.org/10.1016/j.conbuildmat.2021.125646
  • Wang, J., Xu, H., Xu, D., Du, P., Zhou, Z., Yuan, L., & Cheng, X. (2019). Accelerated carbonation of hardened cement pastes: Influence of porosity. Construction & Building Materials, 225, 159–169. https://doi.org/10.1016/j.conbuildmat.2019.07.088
  • Xian, X., Zhang, D., Lin, H., & Shao, Y. (2022). Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance. Journal of CO2 Utilization, 56(December 2021), 101861. https://doi.org/10.1016/j.jcou.2021.101861
  • Xuan, D., Zhan, B., & Poon, C. S. (2018). A maturity approach to estimate compressive strength development of CO2-cured concrete blocks. Cement & Concrete Composites, 85, 153–160. https://doi.org/10.1016/j.cemconcomp.2017.10.005
  • York, I. N., & Europe, I. (2021). Concrete needs to lose its colossal carbon footprint. Nature, 597(7878), 593–594. https://doi.org/10.1038/d41586-021-02612-5
  • Zhang, D., Liu, T., & Shao, Y. (2020). Weathering carbonation behavior of concrete subject to early-age carbonation curing. Journal of Materials in Civil Engineering, 32(4), 1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0003087
  • Zhang, D., & Shao, Y. (2018). Surface scaling of CO2-cured concrete exposed to freeze–thaw cycles. Journal of CO2 Utilization, 27(June), 137–144. https://doi.org/10.1016/j.jcou.2018.07.012
  • Zhang, D., & Shao, Y. (2019). Enhancing chloride corrosion resistance of precast reinforced concrete by carbonation curing. ACI Materials Journal, 116(3), 3–12. https://doi.org/10.14359/51714461

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.