40
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Study on early dynamic compressive strength of alkali-activated slag high performance concrete

, &
Pages 2160-2176 | Received 14 Jun 2023, Accepted 11 Dec 2023, Published online: 22 Dec 2023

References

  • Anıl, N., Altay, N. E., & Abdulkadir, Ç. (2023). Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concrete. European Journal of Environmental and Civil Engineering, 27(1), 519–537. https://doi.org/10.1080/19648189.2022.2052967
  • Chen, L., Yang, L. F., Xu, W. M., Wen, X. Q., & Li, P. S. (2021). Optimization of UHPC steel fiber content and cost performance analysis based on mechanical performance test. Road Traffic Technology, 38(S1), 18–25. (in Chinese)
  • Dai, X. D., Aydin, S., Yardimci, M. Y., Lesage, K., & Geert, D. S. (2020). Influence of water to binder ratio on the rheology and structural build-up of alkali-activated slag/flyash mixtures. Construction and Building Materials, 264, 120253. https://doi.org/10.1016/j.conbuildmat.2020.120253
  • Elzeadani, M., Bompa, D. V., & Elghazouli, A. Y. (2023). Compressive and splitting tensile impact properties of rubberised one-part alkali-activated concrete. Journal of Building Engineering, 71, 106596. https://doi.org/10.1016/j.jobe.2023.106596
  • Fan, D. Q., Zhang, C. P., Lu, J. X., Liu, K. N., Yin, T. Y., Dong, E. L., & Yu, R. (2023). Recycling of steel slag powder in green ultra-high strength concrete (UHSC) mortar at various curing conditions. Journal of Building Engineering, 70, 106361. https://doi.org/10.1016/j.jobe.2023.106361
  • He, S. S., Wang, L. M., Zhang, R. R., & Shi, Z. W. (2018). Influence of water-binder ratio on the microstructure of air-entrained concrete. IOP Conference Series: Materials Science and Engineering, 392(2), 022001. https://doi.org/10.1088/1757-899X/392/2/022001
  • Leong, Y. H., Ong, L. E. D., Sanjayan, G. J., & Nazari, A. (2016). The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Construction and Building Materials, 106, 500–511. https://doi.org/10.1016/j.conbuildmat.2015.12.141
  • Li, S. T., Chen, X. D., Zhang, W., Ning, Y. J., & Casas, J. R. (2023). The impact of accelerated maintenance system on alkali-activated mortar incorporating ultra-fine dredged sand. Journal of Building Engineering, 73, 106797. https://doi.org/10.1016/j.jobe.2023.106797
  • Lian, C., Wang, Y. B., Liu, S., Hao, H., & Hao, Y. F. (2023). Experimental study on dynamic mechanical properties of flyash and slag based alkali-activated concrete. Construction and Building Materials, 364, 129912. https://doi.org/10.1016/j.conbuildmat.2022.129912
  • Liu, J., Wu, C. Q., Li, J., Su, Y., Shao, R. Z., Liu, Z. X., & Chen, G. (2017). Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration. International Journal of Impact Engineering, 109, 131–149. https://doi.org/10.1016/j.ijimpeng.2017.06.006
  • Luo, L., Yao, W., Liang, G. W., & Luo, Y. (2023). Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: Effect of precursor composition and sodium silicate modulus. Journal of Building Engineering, 73, 106712. https://doi.org/10.1016/j.jobe.2023.106712
  • Mindess, S. (2019). Sustainability of concrete. Developments in the formulation and reinforcement of concrete.Woodhead Publishing, 3-17.(2nd ed., pp. 3–17). https://doi.org/10.1016/B978-0-08-102616-8.00001-0
  • Mousavinejad, S. H. G., & Sammak, M. (2021). Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete. Structures, 32, 1420–1427. https://doi.org/10.1016/j.istruc.2021.03.112
  • Nie, L. X., Xu, J. Y., Ren, W. B., & He, Q. (2015). Effects of different temperatures and loading rates on impact deformation toughness of concrete. Vibration and Impact, 34(06), 67–71. https://doi.org/10.13465/j.cnki.jvs.06.013(in Chinese)
  • Öz, H. Ö., Güneş, M., & Yücel, H. E. (2023). Rheological and microstructural properties of FA + GGBFS-based engineered geopolymer composites (EGCs) capable of comparing with M45-ECC as mechanical performance. Journal of Building Engineering, 65, 105792. https://doi.org/10.1016/j.jobe.2022.105792
  • Ping, Q., Ma, Q. Y., & Yuan, P. (2013). Energy dissipation analysis in SHPB splitting tensile test of rock specimens. Journal of Mining and Safety Engineering, 30(03), 401–407. (in Chinese)
  • Shi, Y. H., Ma, Q. Y., Ma, D. D., Huang, K., & Gu, Y. Q. (2023). Effect of aggregate mix proportion on static and dynamic mechanical properties and pore structure of alkali-activated slag mortar with sludge pottery sand. Sustainability, 15(3), 2771. https://doi.org/10.3390/su15032771
  • Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Elrahman, M. A. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies in Construction Materials, 17, e01393. https://doi.org/10.1016/j.cscm.2022.e01393
  • Wang, H., Xu, G. G., Wang, X. D., Zhu, S. B., & Wu, B. Q. (2019). Experimental study on the setting characteristics of cement slurry with accelerator under low temperature environment. Coal Science and Technology, 47(08), 78–83. https://doi.org/10.13199/j.cnki.cst.2019.08.008(in Chinese)
  • Yao, W., Xia, K. W., Liu, Y. H., Shi, Y. R., & Peterson, K. (2019). Dependences of dynamic compressive and tensile strengths of four alkali-activated mortars on the loading rate and curing time. Construction and Building Materials, 202, 891–903. https://doi.org/10.1016/j.conbuildmat.2019.01.069
  • Ye, J. Y., Zhang, W. H., & Shi, D. (2017). Promoting effect of calcium on alkali-activated cementitious materials. Silicate Journal, 45(08), 1101–1112. https://doi.org/10.14062/j.issn.0454-5648.2017.08.08
  • Zhao, Y. F., Wu, B., Peng, S., Yu, Z. P., & Du, X. Q. (2023). Research and mechanism analysis on dynamic compressive behavior of steel fiber reinforced concrete. Construction and Building Materials, 368, 130358. https://doi.org/10.1016/j.conbuildmat.2023.130358
  • Zhao, H., Xie, Y. J., Long, G. C., Li, N., Zhang, J. W., & Cheng, Z. Q. (2022). Failure characteristics and stress–strain analysis of concrete with bonding interface under impact load. Journal of Shanghai Jiaotong University, 56(09), 1208–1217. https://doi.org/10.16183/j.cnki.jsjtu.2021.343(in Chinese)
  • Zhou, Y., Zou, S. H., Wen, J. M., & Zhang, Y. S. (2023). Study on the damage behavior and energy dissipation characteristics of basalt fiber concrete using SHPB device. Construction and Building Materials, 368, 130413. https://doi.org/10.1016/j.conbuildmat.2023.130413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.