75
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A method to evaluate the capillary stress tensor at failure in unsaturated soils

, , &
Pages 2265-2290 | Received 29 Jun 2023, Accepted 05 Jan 2024, Published online: 08 Feb 2024

References

  • Alonso, E., Pereira, J.-M., Vaunat, J., & Olivella, S. (2010). A microstructurally based effective stress for unsaturated soils. Géotechnique, 60(12), 913–925. https://doi.org/10.1680/geot.8.P.002
  • Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils. Géotechnique, 40(3), 405–430. https://doi.org/10.1680/geot.1990.40.3.405
  • Arairo, W., Prunier, F., Djéran-Maigre, I., & Darve, F. (2012). A new insight into modelling the behaviour of unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 37(16), 2629–2654. https://doi.org/10.1002/nag.2151
  • Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2), 182–185. https://doi.org/10.1063/1.1721956
  • Bishop, A. M., & Blight, G. E. (1963). Some aspects of the effective stress in saturated and unsaturated soils. Géotechnique, 13(3), 177–197. https://doi.org/10.1680/geot.1963.13.3.177
  • Bruno, A. W., Gallipoli, D., & Mendes, J. (2021). Hydromechanical behaviour of two unsaturated silts: Laboratory data and model predictions. Canadian Geotechnical Journal, 59(6), 837–846. https://doi.org/10.1139/cgj-2021-0170
  • Chateau, X., & Dormieux, L. (1995). Homogenization of a non-saturated porous medium: Hill’s lemma and applications. C. R. Acad. Sci. Paris, Série II, 320, 627–634.
  • Christoffersen, J., & Hutchinson, J. (1979). A class of phenomenological corner theories of plasticity. Journal of the Mechanics and Physics of Solids, 27(5-6), 465–487. https://doi.org/10.1016/0022-5096(79)90026-7
  • Coleman, B. D., & Gurtin, M. E. (1967). Thermodynamics with internal state variables. The Journal of Chemical Physics, 47(2), 597–613. https://doi.org/10.1063/1.1711937
  • Coussy, O. (2004). Poromechanics. Wiley.
  • Coussy, O., & Dangla, P. (2002). Approche énergétique du comportement des sols non saturés. In O. Coussy & J.M. Fleureau (Eds.), Mécanique des sols non saturés. (p. 137–174). traité MIM Hermes Lavoisier.
  • Cowin, S. C., & Nunziato, J. W. (1983). Linear elastic materials with voids. Journal of Elasticity, 13(2), 125–147. https://doi.org/10.1007/BF00041230
  • Darve, F., Arulanandan, K., & Scott, R. F. (1993). Liquefaction phenomenon: Modelling, stability and uniqueness, international conference, verification of numerical procedures for the analysis of soil liquefaction problems [Paper presentation]. In Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, International Conference, Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, California. (p. 1305–1320) Balkema A;. Retrieved from https://www.tib.eu/de/suchen/id/BLCP
  • De Buhan, P., & Dormieux, L. (1996). On the validity of the effective stress concept for assessing the strength of saturated porous materials: A homogenization approach. Journal of the Mechanics and Physics of Solids, 44(10), 1649–1667. https://doi.org/10.1016/0022-5096(96)00046-4
  • Desai, C., & Siriwardane, H. (1984). Constitutive laws for engineering materials, with emphasis on geologic materials. Prentice-Hall.
  • DiMaggio, F. L., & Sandler, I. S. (1971). Material model for granular soils. Journal of the Engineering Mechanics Division, 97(3), 935–950. https://doi.org/10.1061/JMCEA3.0001427
  • Duriez, J., Eghbalian, M., Wan, R., & Darve, F. (2017). The micromechanical nature of stresses in triphasic granular media with interfaces. Journal of the Mechanics and Physics of Solids, 99, 495–511. https://doi.org/10.1016/j.jmps.2016.10.011
  • Duriez, J., & Wan, R. (2016). Stress in wet granular media with interfaces via homogenization and discrete element approaches. Journal of Engineering Mechanics, 142(12), 1–9, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001163
  • Duriez, J., & Wan, R. (2017a). Contact angle mechanical influence for wet granular soils. Acta Geotechnica, 12(1), 67–83. https://doi.org/10.1007/s11440-016-0500-6
  • Duriez, J., & Wan, R. (2017b). Subtleties in discrete-element modelling of wet granular soils. Géotechnique, 67(4), 365–370. https://doi.org/10.1680/jgeot.15.P.113
  • Duriez, J., & Wan, R. (2018). A micromechanical μUNSAT effective stress expression for stress-strain behaviour of wet granular materials. Geomechanics for Energy and the Environment, 15, 10–18. https://doi.org/10.1016/j.gete.2017.12.003
  • Duriez, J., Wan, R., Pouragha, M., & Darve, F. (2018). Revisiting the existence of an effective stress for wet granular soils with micromechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 42(8), 959–978. https://doi.org/10.1002/nag.2774
  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. In Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences, 241(1226), 376–396. (
  • Farahnak, M., Wan, R., Pouragha, M., Eghbalian, M., Nicot, F., & Darve, F. (2021). Micromechanical description of adsorptive-capillary stress in wet fine-grained media. Computers and Geotechnics, 137, 104047. 104047. Retrieved from https://www.sciencedirect.com/science/article/pii/S0266352X21000501 https://doi.org/10.1016/j.compgeo.2021.104047
  • Froiio, F., & Roux, J.-N. (2011). Numerical stress probing on a 2d model granular material. Particle-Based Methods II - Fundamentals and Applications, 72–83.
  • Gray, W. G., & Schrefler, B. A. (2007). Analysis of the solid phase stress tensor in multiphase porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 31, 541–581.
  • Gurtin, M. E., & Murdoch, A. I. (1975). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323. https://doi.org/10.1007/BF00261375
  • Hoang, N. L. (2017). [ Etude des propriétés hydromécaniques d’un sable limoneux ]. [Unpublished doctoral dissertation). ENTPE, Université de Lyon].
  • Khalili, N., & Khabbaz, M. H. (1998). A unique relationship for χ for the determination of the shear strengh of unsaturated soils. Géotechnique, 48(5), 681–687. https://doi.org/10.1680/geot.1998.48.5.681
  • Lade, P. V., & De Boer, R. (1997). The concept of effective stress for soil, concrete and rock. Géotechnique, 47(1), 61–78. https://doi.org/10.1680/geot.1997.47.1.61
  • Lanier, J., & Bloch, J. (1989). Essais à volume constant réalisés sur une presse tridimensionnelle. In J. Reynouard (Ed.), Greco geomaterials. (p. 240–243). INSA Lyon.
  • Lu, N., & Likos, W. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  • Madeo, A., dell’Isola, F., & Darve, F. (2013). A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. Journal of the Mechanics and Physics of Solids, 61(11), 2196–2211. https://doi.org/10.1016/j.jmps.2013.06.009
  • Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), 571–574. https://doi.org/10.1016/0001-6160(73)90064-3
  • Nikooee, E., Habibagahi, G., Hassanizadeh, S., & Ghahramani, A. (2013). Effective stress in unsaturated soils: A thermodynamic approach based on the interfacial energy and hydromechanical coupling. Transport in Porous Media, 96(2), 369–396. https://doi.org/10.1007/s11242-012-0093-y)
  • Oller, S (2014). Homogenization theory. In L. N. on Numerical Methods in Engineering & Sciences. (Eds.), Numerical simulation of mechanical behavior of composite materials. Springer.
  • Rojas, E., & Chávez, O. (2013). Volumetric behavior of unsaturated soils. Canadian Geotechnical Journal, 50(2), 209–222. https://doi.org/10.1139/cgj-2012-0341
  • Roux, J.-N., & Combe, G. (2002). Quasistatic rheology and the origins of strain. Comptes Rendus Physique, 3(2), 131–140. https://doi.org/10.1016/S1631-0705(02)01306-3
  • Rumpf, H. (1962). The strength of granules and agglomerates. Agglomeration. 379–418.
  • Scholtès, L., Hicher, P. ‐Y., Nicot, F., Chareyre, B., & Darve, F. (2009). On the capillary stress tensor in wet granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 33(10), 1289–1313. https://doi.org/10.1002/nag.767
  • Schwan, B. (2023). Microstructural interpretation of effective stress equations for unsaturated sands. International Journal of Geo-Engineering, 14(4), 1–9 https://doi.org/10.1186/s40703-022-00181-8)
  • Sibille, L., Hadda, N., Nicot, F., Tordesillas, A., & Darve, F. (2015). Granular plasticity, a contribution from discrete mechanics. Journal of the Mechanics and Physics of Solids, 75, 119–139. https://doi.org/10.1016/j.jmps.2014.09.010
  • Skempton, A. W. (1954). The pore-pressure coefficients A and B. Géotechnique, 4(4), 143–147. https://doi.org/10.1680/geot.1954.4.4.143
  • Skempton, A. W., & Bjerrum, L. (1957). A contribution to the settlement analysis of foundations on clay. Géotechnique, 7(4), 168–178. https://doi.org/10.1680/geot.1957.7.4.168
  • Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear [Paper presentation]. 1st International Conference for Soil Mechanics and Foundation Engineering, Cambridge. In (Vol. 1, pp. 54–56).
  • Weber, R., Romero, E., & Lloret, A. (2022). Shear strength and yield surface of a partially saturated sandy silt under generalized stress states. Canadian Geotechnical Journal, 59(7), 1188–1204. https://doi.org/10.1139/cgj-2021-0158
  • Zhou, T., Ioannidou, K., Masoero, E., Mirzadeh, M., Pellenq, R. J.-M., & Bazant, M. Z. (2019). Capillary stress and structural relaxation in moist granular materials. Langmuir: The ACS Journal of Surfaces and Colloids, 35(12), 4397–4402. Retrieved from (PMID: 30798608) https://doi.org/10.1021/acs.langmuir.8b03400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.