92
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Study on multi-scale damage and failure mechanism of rock fracture penetration: experimental and numerical analysis

, , , , &
Pages 2385-2401 | Received 13 Sep 2023, Accepted 28 Jan 2024, Published online: 06 Mar 2024

References

  • Chen, L. X., Guo, W. Y., Zhang, D. X., & Zhao, T. B. (2022). Experimental study on the influence of prefabricated fissure size on the directional propagation law of rock type-I crack. International Journal of Rock Mechanics and Mining Sciences, 160, 105274. https://doi.org/10.1016/j.ijrmms.2022.105274
  • Cheng, H., Zhou, X., Zhu, J., & Qian, Q. (2016). The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression. Rock Mechanics and Rock Engineering, 49(9), 3481–3494. https://doi.org/10.1007/s00603-016-0998-9
  • Deng, M., Zhang, Z., Yu, W., Xin, J., & Xu, S. (2022). Acoustic emission characteristics and damage law for prefabricated single-crack sandstone under uniaxial compression. Structural Control and Health Monitoring, 29(10), 29. https://doi.org/10.1002/stc.3018
  • Feng, P., Xu, Y., & Dai, F. (2021). Effects of dynamic strain rate on the energy dissipation and fragment characteristics of cross-fissured rocks. International Journal of Rock Mechanics and Mining Sciences, 138, 104600. https://doi.org/10.1016/j.ijrmms.2020.104600
  • Germanovich, L. N., & Dyskin, A. V. (2000). Fracture mechanisms and instability of openings in compression. International Journal of Rock Mechanics and Mining Sciences, 37(1–2), 263–284. https://doi.org/10.1016/s1365-1609(99)00105-7
  • Haeri, H., Shahriar, K., Marji, M. F., & Moarefvand, P. (2014). Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. International Journal of Rock Mechanics and Mining Sciences, 67, 20–28. https://doi.org/10.1016/j.ijrmms.2014.01.008
  • Huang, Y., Fu, Z., Chen, J., Zhou, Z., & Wang, J. (2015). The external water pressure on a deep buried tunnel in fractured rock. Tunnelling and Underground Space Technology, 48, 58–66. https://doi.org/10.1016/j.tust.2015.02.003
  • Huang, Z., Li, X., Li, S., Zhao, K., & Zhang, R. (2018). Investigation of the hydraulic properties of deep fractured rocks around underground excavations using high-pressure injection tests. Engineering Geology, 245, 180–191. https://doi.org/10.1016/j.enggeo.2018.07.020
  • Huang, Y. H., Yang, S. Q., & Zhao, J. (2016). Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures. rock. Rock Mechanics and Rock Engineering, 49(12), 4711–4729. https://doi.org/10.1007/s00603-016-1081-2
  • Kato, T., & Nishioka, T. (2005). Analysis of micro-macro material properties and mechanical effects of damaged material containing periodically distributed elliptical microcracks. International Journal of Fracture, 131(3), 247–266. https://doi.org/10.1007/s10704-004-4558-z
  • Lei, Q., Latham, J. P., & Xiang, J. (2016). Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks. Rock Mechanics and Rock Engineering, 49(12), 4799–4816. https://doi.org/10.1007/s00603-016-1064-3
  • Lei, Q., Latham, J. P., Xiang, J., & Tsang, C. F. (2017). Role of natural fractures in damage evolution around tunnel excavation in fractured rocks. Engineering Geology, 231, 100–113. https://doi.org/10.1016/j.enggeo.2017.10.013
  • Lei, Q., & Wang, X. (2016). Tectonic interpretation of the connectivity of a multiscale fracture system in limestone. Geophysical Research Letters, 43(4), 1551–1558. https://doi.org/10.1002/2015GL067277
  • Li, S., Yan, T., Li, W., & Bi, F. (2016). Simulation on vibration characteristics of fractured rock. Rock Mechanics and Rock Engineering, 49(2), 515–521. https://doi.org/10.1007/s00603-015-0762-6
  • Liu, Z., Ma, C., Wei, X., & Xie, W. (2022). Experimental study on the mechanical characteristics of single-fissure sandstone under triaxial extension. Rock Mechanics and Rock Engineering, 55(7), 4441–4457. https://doi.org/10.1007/s00603-022-02876-x
  • Ma, Q., Liu, X., Tan, Y., Elsworth, D., Shang, J., Song, D., Liu, X., & Yan, F. (2023). Numerical study of mechanical properties and microcrack evolution of double-layer composite rock specimens with fissures under uniaxial compression. Engineering Fracture Mechanics, 289, 109403. https://doi.org/10.1016/j.engfracmech.2023.109403
  • Mohammadi, H., & Pietruszczak, S. (2019). Description of damage process in fractured rocks. International Journal of Rock Mechanics and Mining Sciences, 113, 295–302. https://doi.org/10.1016/j.ijrmms.2018.12.003
  • Munoz, H., & Taheri, A. (2017). Local damage and progressive localisation in porous sandstone during cyclic loading. Rock Mechanics and Rock Engineering, 50(12), 3253–3259. https://doi.org/10.1007/s00603-017-1298-8
  • Pan, W., Wang, X., Liu, Q., Yuan, Y., & Zuo, B. (2019). Non-parallel double-crack propagation in rock-like materials under uniaxial compression. International Journal of Coal Science & Technology, 6(3), 372–387. https://doi.org/10.1007/s40789-019-0255-4
  • Park, C. H., & Bobet, A. (2009). Crack coalescence in specimens with open and closed flaws: A comparison. International Journal of Rock Mechanics and Mining Sciences, 46(5), 819–829. https://doi.org/10.1016/j.ijrmms.2009.02.006
  • Saadat, M., & Taheri, A. (2019). Modelling micro-cracking behaviour of pre-cracked granite using grain-based distinct element model. Rock Mechanics and Rock Engineering, 52(11), 4669–4692. https://doi.org/10.1007/s00603-019-01862-0
  • Saadat, M., & Taheri, A. (2020a). Effect of contributing parameters on the behaviour of a bolted rock joint subjected to combined pull-and-shear loading: A DEM approach. Rock Mechanics and Rock Engineering, 53(1), 383–409. https://doi.org/10.1007/s00603-019-01921-6
  • Saadat, M., & Taheri, A. (2020b). Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach. Engineering Fracture Mechanics, 239, 107297. https://doi.org/10.1016/j.engfracmech.2020.107297
  • Wang, H., Gao, Y. T., & Zhou, Y. (2022). Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression. Theoretical and Applied Fracture Mechanics, 117, 103167. https://doi.org/10.1016/j.tafmec.2021.103167
  • Wang, Y., Tang, J., Dai, Z., & Yi, T. (2018). Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression. Engineering Fracture Mechanics, 197, 1–20. https://doi.org/10.1016/j.engfracmech.2018.04.044
  • Wang, D. J., Tang, H., Shen, P., Su, X., & Huang, L. (2019). Co-effects of bedding planes and parallel flaws on fracture evolution in anisotropic rocks. Engineering Geology, 264, 105382. https://doi.org/10.1016/j.enggeo.2019.105382
  • Wang, S., Zhang, Z., Huang, X., & Lei, Q. (2023). A numerical study of elastic wave arrival behavior in a naturally fractured rock based on a combined displacement discontinuity-discrete fracture network model. Rock Mechanics and Rock Engineering, 56(4), 2717–2736. https://doi.org/10.1007/s00603-022-03180-.
  • Wang, Y. T., Zhou, X. P., & Kou, M. M. (2019). Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads. Acta Geotechnica, 14(4), 1161–1193. https://doi.org/10.1007/s11440-018-0709-7
  • Wu, D. Y., Yu, L. Y., Su, H. J., Wu, J. Y., Liu, R. C., & Zhou, J. (2021). Experimental study and PFC3D simulation on crack propagation of fractured rock-like specimens with bolts under uniaxial compression. Rock and Soil Mechanics, 42(06), 1681–1692. https://doi.org/10.16285/j.rsm.2020.1501
  • Yi, C. P., Johansson, D., & Greberg, J. (2018). Effects of in-situ stresses on the fracturing of rock by blasting. Computers and Geotechnics, 104, 321–330. https://doi.org/10.1016/j.compgeo.2017.12.004
  • Zhang, H. M., Chen, M., Meng, X. Z., Mu, N. N., & Liu, H. (2022). Damage model and mechanical characteristics of jointed rock mass with different joint dip angles. Journal of Harbin Engineering University, 43(06), 801–808. https://kns.cnki.net/kcms/detail/23.1390.u.20220322.1258.006.html
  • Zhang, H. M., Qin, X. R., Chen, M., Yang, G. S., & Lu, Y. N. (2023). A damage constitutive model for a jointed rock mass under triaxial compression. International Journal of Geomechanics, 23(6) , 04023059. https://doi.org/10.1061/IJGNAI.GMENG-7834
  • Zhang, H. M., Wang, F. Y., & Yang, G. S. (2023). Experimental study on creep characteristics of infiltrated coal-rock under load. Archive of Applied Mechanics, 93(4), 1331–1349. https://doi.org/10.1007/s00419-022-02331-x
  • Zhang, L., Zhang, Z., Chen, Y., Dai, B., & Wang, B. (2023). Crack development and damage patterns under combined dynamic-static loading of parallel double fractured rocks based on DIC technique. Acta Geotechnica, 18(2), 877–901. https://doi.org/10.1007/s11440-022-01595-5
  • Zhao, C., Zhou, Y. M., Zhao, C. F., & Bao, C. (2018). Cracking processes and coalescence modes in rock-like specimens with two parallel pre-existing cracks. Rock Mechanics and Rock Engineering, 51(11), 3377–3393. https://doi.org/10.1007/s00603-018-1525-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.