34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Resting time effects on flow properties of cementitious materials: a study on self-compacting concrete equivalent mortar made with recycled aggregates

& ORCID Icon
Received 14 Feb 2024, Accepted 29 May 2024, Published online: 19 Jun 2024

References

  • Adjoudj, M., Ezziane, K., Kadri, E. H., & Soualhi, H. (2018). Study of the rheological behavior of mortar with silica fume and superplasticizer admixtures according to the water film thickness. KSCE Journal of Civil Engineering, 22(7), 2480–2491. https://doi.org/10.1007/s12205-017-0228-3
  • Amara, H., Arabi, N., & Perrot, A. (2022). Unconventional tools for the study of the flow properties of concrete equivalent mortar based on recycled concrete aggregates. Environmental Science and Pollution Research, 29(18), 26739–26758. https://doi.org/10.1007/s11356-021-17767-x
  • Arabi, N., & Berredjem, L. (2011). Valorisation des déchets de démolition comme granulats pour bétons. Déchets Sciences et Techniques, 60, 25–30. http://lodel.irevues.inist.fr/dechets-sciences-techniques/index.php?id=2765
  • Arabi, N., Meftah, H., Amara, H., Kebaïli, O., & Berredjem, L. (2019). Valorization of recycled materials in development of self-compacting concrete: Mixing recycled concrete aggregates: Windshield waste glass aggregates. Construction and Building Materials, 209, 364–376. https://doi.org/10.1016/j.conbuildmat.2019.03.024
  • Assaad, J. (2016). Correlating thixotropy of self-consolidating concrete to stability, formwork pressure, and multilayer casting. Journal of Materials in Civil Engineering, 28(10), 04016107. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001624
  • Assaad, J. J., & Daou, Y. (2016). Use of the equivalent mortar phase to assess thixotropy of fresh SCC: Prediction of interfacial bond strength between successive placement lifts. Applied Rheology, 26, 1–10. https://doi.org/10.3933/ApplRheol-26-42759
  • Assaad, J. J., & Khayat, K.H. (2004). Assessment of thixotropy of self-consolidating concrete and concrete-equivalent-mortar—effect of binder composition and content. ACI Materials Journal, 101(5), 400–408. https://doi.org/10.14359/13426
  • ASTM C33-01. (2001). Standard Specifications for Concrete Aggregates. Subcommittee ASTM C09.20 on Normal Weight Aggregates. ASTM International, West Conshohocken, United States
  • ASTM C595. (2002). Standard Specification for Blended Hydraulic Cements. ASTM International, West Conshohocken, United States.
  • Bahari, A., Berenjian, J., & Sadeghi-Nik, A. (2016). Modification of Portland cement with Nano SiC. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86(3), 323−331. https://doi.org/10.1007/s40010-015-0244-y
  • Bahari, A., Sadeghi-Nik, A., Cerro-Prada, E., Sadeghi-Nik, A., Roodbari, M., & Zhuge, Y. (2021). One-step random-walk process of nanoparticles in cement-based materials. Journal of Central South University, 28(6), 1679−1691. https://doi.org/10.1007/s11771-021-4726-6
  • Bahari, A., Sadeghi-Nik, A., Shaikh, F. U. A., Sadeghi-Nik, A., Cerro-Prada, E., Mirshafiei, E., & Roodbari, M. (2021). Experimental studies on rheological, mechanical, and microstructure properties of self-compacting concrete containing perovskite nanomaterial. Structural Concrete, 23(1), 564–578. https://doi.org/10.1002/suco.202000548
  • Benabed, B., Kadri, E. H., Azzouz, L., & Kenai, S. (2012). Properties of self-compacting mortar made with various types of sand. Cement and Concrete Composites, 34(10), 1167–1173. https://doi.org/10.1016/j.cemconcomp.2012.07.007
  • Berredjem, L., Arabi, N., Molez, L., & Brossault, J. Y. (2018). Influence of recycled sand containing fillers on the rheological and mechanical properties of masonry mortars. Journal of Materials and Environmental Science, 9(4), 1255–1265. https://doi.org/10.26872/jmes.2017.9.4.137
  • Dada, H., Soualhi, H., Belaidi, A. S. E., Kadri, E. H., & Benabed, B. (2023). A study of the rheological behaviour of eco-friendly mortar made with metakaolin and marble powder at various ambient temperatures. European Journal of Environmental and Civil Engineering, 27(3), 1088–1103. https://doi.org/10.1080/19648189.2022.2072404
  • Dumne, S. M. (2014). Effect of superplasticizer on fresh and hardened properties of self-compacting concrete containing fly ash. American Journal of Engineering Research, 3(3), 205–211. https://www.ajer.org/v3(03).html. Accessed November 18, 2022.
  • Dzuy, N. Q., & Boger, D. V. (1985). Direct yield stress measurement with the vane method. Journal of Rheology, 29(3), 335–347. https://doi.org/10.1122/1.549794
  • EFNARC. (2002). Specification and Guidelines for Self-compacting Concrete. European Association for Producers and Applicators of Specialist Building Products. EFNARC Association House, Farnham, UK.
  • Erdem, T. K., Khayat, K. H., & Yahia, A. (2009). Correlating rheology of self-consolidating concrete to corresponding concrete-equivalent mortar. ACI Materials Journal, 106(2), 154–160. https://doi.org/10.14359/56462
  • Estellé, P., & Lanos, C. (2012). High torque vane rheometer for concrete: Principle and validation from rheological measurements. Applied Rheology, 22(1), 12881. https://doi.org/10.3933/applrheol-22-12881
  • Ghorbel, E., Wardeh, G., Gomart, H., & Matar, P. (2019). Formulation parameters effects on the performances of concrete equivalent mortars incorporating different ratios of recycled sand. Journal of Building Physics, 43(6), 545–572. https://doi.org/10.1177/17442591198960
  • Ghorbel, E., Wardeh, G., & González-Fonteboa, B. (2023). Effect of 10% recycled sands from various storage sites on the mortar’s properties. European Journal of Environmental and Civil Engineering, 27(14), 4067–4085. https://doi.org/10.1080/19648189.2023.2169766
  • Gołaszewski, J., Cygan, G., Drewniok, M., & Kostrzanowska–Siedlarz, A. (2021). Usability of mortar for predicting shear strength development at rest of fresh self-compacting concrete. Construction and Building Materials, 295, 123617. https://doi.org/10.1016/j.conbuildmat.2021.123617
  • Haddad, O., Aggoun, S., Waller, V., & Nachbaur, L. (2012). Estimation de la résistance au jeune âge du BAP à partir d’essais sur MBE: Une nouvelle approche de la maturométrie. European Journal of Environmental and Civil Engineering, 16(10), 1202–1215. https://doi.org/10.1080/19648189.2012.688614
  • Hieu, T. H. (1996). Compatibilité ciment-superplastifiant dans les bétons à hautes performances. Bulletin Des Laboratoires Des Ponts et Chaussées, 206, 63–73. https://trid.trb.org/view/992489 (Accessed April 14, 2024).
  • Jiao, D., De Schryver, R., Shi, C., & De Schutte, G. (2021). Thixotropic structural build-up of cement-based materials: A state-of-the-art review. Cement and Concrete Composites, 122, 104152. https://doi.org/10.1016/j.cemconcomp.2021.104152[Mismatch]
  • Jinhua, J. (2002). (2002). Properties of mortar for self-compacting concrete [Doctoral thesis]. University College. https://discovery.ucl.ac.uk/id/eprint/1317582/. Accessed 11 March 2023.
  • Kabagire, D., Diederich, P., & Yahia, A. (2015). New insight into the equivalent concrete mortar approach for self-consolidating concrete. Journal of Sustainable Cement-Based Materials, 4(3-4), 215–224. https://doi.org/10.1080/21650373.2015.1018983
  • Kafi, M. A., Sadeghi-Nik, A., Bahari, A., Sadeghi-Nik, A., & Mirshafiei, E. (2016). Microstructural characterization and mechanical properties of cementitious mortar containing montmorillonite nanoparticles. Journal of Materials in Civil Engineering, 28(12), 04016155. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001671
  • Kebaïli, O., Mouret, M., Arabi, N., & Cassagnaber, F. (2015). Adverse effect of the mass substitution of natural aggregates by air-dried recycled concrete aggregates on the self-compacting ability of concrete: Evidence and analysis through an example. Journal of Cleaner Production, 87, 752–761. https://doi.org/10.1016/j.jclepro.2014.10.077
  • Khalilpasha, M. H., Sadeghi-Nik, A., Bahari, A., Kimiaeifard, K., & Molla, M. A. (2012). Sustainable development using recyclable rubber in Self-Compacting Concrete [Paper presentation]. Third International Conference on Construction in Developing Countries (ICCIDC–III)., Bangkok, Thailand. https://www.researchgate.net/publication/275031249
  • Khayat, K. H., Assaad, J., & Daczko, J. (2004). Comparison of field-oriented test methods to assess dynamic stability of self-consolidating concrete. ACI Materials Journal, 101(2), 168–176. https://doi.org/10.14359/13066
  • Khayat, K. H., Omran, A. F., Naji, S., Billberg, P., & Yahia, A. (2015). Field-oriented test methods to evaluate structural build-up at rest of flowable mortar and concrete. Materials and Structures, 45(10), 1547–1564. https://doi.org/10.1617/s11527-012-9856-8
  • Kohandelnia, M., Hosseinpoor, M., Yahia, A., & Belarbi, R. (2023). Multiscale investigation of self-consolidating earthen materials using a novel concrete-equivalent mortar approach. Construction and Building Materials, 370, 130700. https://doi.org/10.1016/j.conbuildmat.2023.130700
  • Li, Z. (2022). Rheological model of fresh concrete considering granular characteristics. Composites Part B: Engineering, 244, 110148. https://doi.org/10.1016/j.compositesb.2022.110148
  • Li, T., & Liu, J. (2021). Effect of aggregate size on the yield stress of mortar. Construction and Building Materials, 305, 124739. https://doi.org/10.1016/j.conbuildmat.2021.124739
  • Li, T., Nogueira, R., Costa Pereira, M. F., de Brito, J., & Liu, J. (2024). Effect of the incorporation ratio of recycled concrete aggregate on the properties of self-compacting mortar. Cement and Concrete Composites, 147, 105429. https://doi.org/10.1016/j.cemconcomp.2024.105429
  • Li, T., Nogueira, R., de Brito, J., & Liu, J. (2024). Prediction model of the mortar’s yield stress based on the aggregate’s volume fraction and properties. Journal of Materials Research and Technology, 29, 3591–3597. https://doi.org/10.1016/j.jmrt.2024.02.103
  • Li, P., Ran, J., An, X., Bai, H., Nie, D., Zhang, J., & Shao, K. (2022). An enhanced mix-design method for self-compacting concrete based on paste rheological threshold theory and equivalent mortar film thickness theories. Construction and Building Materials, 347, 128573. https://doi.org/10.1016/j.conbuildmat.2022.128573
  • Lowke, D. (2018). Thixotropy of SCC: A model describing the effect of particle packing and superplasticizer adsorption on thixotropic structural build-up of the mortar phase based on interparticle interactions. Cement and Concrete Research, 104, 94–104. https://doi.org/10.1016/j.cemconres.2017.11.004
  • Meftah, H., & Arabi, N. (2024). Effects of elevated temperatures’ exposure on the properties of concrete incorporating recycled concrete aggregates. Construction and Building Materials, 411, 134612. https://doi.org/10.1016/j.conbuildmat.2023.134612
  • Mefteh, H., Kebaïli, O., Oucief, H., Berredjem, L., & Arabi, N. (2013). Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. Journal of Cleaner Production, 54, 282–288. https://doi.org/10.1016/j.jclepro.2013.05.009
  • Megid, W. A., & Khayat, K. H. (2019). Effect of structural buildup at rest of self-consolidating concrete on mechanical and transport properties of multilayer casting. Construction and Building Materials, 196, 626–636. https://doi.org/10.1016/j.conbuildmat.2018.11.112
  • Mehdipour, I., Vahdani, M., Amini, K., & Shekarchi, M. (2016). Linking stability characteristics to material performance of self-consolidating concrete-equivalent-mortar incorporating fly ash and metakaolin. Construction and Building Materials, 105, 206–217. https://doi.org/10.1016/j.conbuildmat.2015.12.090
  • Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Ashour, A., & Khayat, K. H. (2022). Cement paste modified by nano-montmorillonite and carbon nanotubes. ACI Materials Journal, 119(3), 173–185. https://doi.org/10.14359/51734612
  • Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T., & de Brito, J. (2021). Strength optimization of cementitious composites reinforced by carbon nanotubes and titania nanoparticles. Construction and Building Materials, 303, 124510. https://doi.org/10.1016/j.conbuildmat.2021.124510
  • NA 442. (2003). Algerian standard, cement: composition, specifications and conformity criteria for common cements, IANOR, Algiers.
  • Neves, R., & de Brito, J. (2022). Estimated service life of ordinary and high-performance reinforced recycled aggregate concrete. Journal of Building Engineering, 46, 103769. https://doi.org/10.1016/j.jobe.2021.103769
  • NF EN 1097-6. (2006). Tests for mechanical and physical properties of aggregates –Part 6: Determination of particle density and water absorption. AFNOR, La Plaine Saint-Denis, France (in French).
  • NF EN 934-2. (2012). High range water reducing/superplasticized concrete admixture. AFNOR, La Plaine Saint-Denis, France (in French).
  • NF P 18-508. (2012). Additions for Concrete e Limestone Additions–Specifications and Conformity Criteria. AFNOR, La Plaine Saint-Denis, France.
  • Paiva, H., Velosa, A., Cachim, P., & Ferreira, V. M. (2015). Correlation between mortar and concrete behavior using rheological analysis. Journal of Building Engineering, 4, 177–188. https://doi.org/10.1016/j.jobe.2015.09.001
  • Petit, J. Y., Wirquin, E., & Khayat, K. H. (2010). Effect of temperature on the rheology of flowable mortars. Cement and Concrete Composites, 32(1), 43–53. https://doi.org/10.1016/j.cemconcomp.2009.10.003
  • Revilla-Cuesta, V., Skaf, M., Santamaría, A., Hernández-Bagaces, J. J., & Ortega-López, V. (2021). Temporal flowability evolution of slag-based self-compacting concrete with recycled concrete aggregate. Journal of Cleaner Production, 299, 126890. https://doi.org/10.1016/j.jclepro.2021.126890
  • Rosero, I. A., Somarriba, S., Farivar, B., & Murray, C. D. (2023). Effects of mixture design parameters on the properties of belitic calcium sulfoaluminate concrete. Magazine of Concrete Research, 76(5), 1–−12. https://doi.org/10.1680/jmacr.23.00067
  • Roussel, N., & Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow. Journal of Rheology, 49(3), 705–718. https://doi.org/10.1122/1.1879041
  • Sadeghi-Nik, A., Berenjian, J., Alimohammadi, S., Lotfi-Omran, O., Sadeghi-Nik, A., & Karimaei, M. (2019). The effect of recycled concrete aggregates and metakaolin on the mechanical properties of self-compacting concrete containing nanoparticles. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(S1), 503–515. https://doi.org/10.1007/s40996-018-0182-4[Mismatch]
  • Sadeghi-Nik, A., Berenjian, J., Bahari, A., Safaei, A. S., & Dehestani, M. (2017). Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construction and Building Materials, 155, 880–891. https://doi.org/10.1016/j.conbuildmat.2017.08.107
  • Santos, S., da Silva, P. R., & de Brito, J. (2019). Self-compacting concrete with recycled aggregates: A literature review. Journal of Building Engineering, 22, 349–371. https://doi.org/10.1016/j.jobe.2019.01.001
  • Schwartzentruber, A., & Catherine, C. (2000). Method of the concrete equivalent mortar (CEM): A new tool to design concrete containing admixture. Materials and Structures, 33(8), 475–482. https://doi.org/10.1007/BF02480524
  • Shmlls, M., Abed, M., Horvath, T., & Bozsaky, D. (2022). Multicriteria based optimization of second generation recycled aggregate concrete. Case Studies in Construction Materials, 17, e01447. https://doi.org/10.1016/j.cscm.2022.e01447
  • Siddique, R. (2020). Self-compacting concrete: Materials, properties, and applications. Woodhead Publishing. https://doi.org/10.1016/C2018-0-01683-7
  • Sosa, M. E., Carrizo, L. E., Zega, C. J., & Villagrán Zaccardi, Y. A. (2018). Water absorption of fine recycled aggregates: Effective determination by a method based on electrical conductivity. Materials and Structures, 51(5) https://doi.org/10.1617/s11527-018-1248-2
  • Zhang, Q., Chen, J., Zhu, J., Yang, Y., Zhou, D., Wang, T., Shu, X., & Qiao, M. (2022). Advances in organic rheology-modifiers (chemical admixtures) and their effects on the rheological properties of cement-based materials. Materials, 15(24), 8730. https://doi.org/10.3390/ma15248730

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.