25
Views
0
CrossRef citations to date
0
Altmetric
Note

Comparison between the measured and the numerically predicted behaviour of an instrumented piled raft

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 08 Feb 2024, Accepted 30 May 2024, Published online: 22 Jun 2024

References

  • Abchir, Z., Burlon, S., Frank, R., Habert, J., & Legrand, S. (2016). t – z curves for piles from pressuremeter test results. Géotechnique, 66(2), 137–148. https://doi.org/10.1680/jgeot.15.P.097
  • Amundsen, H. A., Emdal, A., & Thakur, V. (2020). Field and laboratory study of stress relief due to unloading in block samples of sensitive clay. Géotechnique, 70(6), 503–517. https://doi.org/10.1680/jgeot.18.P.083
  • Basile, F. (2015). Non-linear analysis of vertically loaded piled rafts. Computers and Geotechnics, 63, 73–82. Elsevier Ltd. https://doi.org/10.1016/j.compgeo.2014.08.011
  • Bernardes, H. C. (2023). [Analysis of the behavior of a piled raft based on foundation and columns instrumentation]. [D.Sc. thesis]. Department of Civil and Environmental Engineering, University of Brasilia. (in portuguese). 240 p.
  • Bernardes, H. C., Carvalho, S. L., Sales, M. M., Almeida, R. D., Farias, M. M., & Pinho, F. A. X. C. (2019). Hybrid numerical tool for nonlinear analysis of piled rafts. Soils and Foundations, 59(6), 1659–1674. https://doi.org/10.1016/j.sandf.2019.04.011
  • Bernardes, H. C., & Cunha, R. P. D (2020). A simplified settlement analysis of a piled raft in London Clay. Geotecnia, 150, 107–120. https://doi.org/10.24849/j.geot.2020.150.07
  • Bernardes, H. C., Pinto da Cunha, R., Cruz Junior, A. J. D., Sales, M., & Rodríguez Rebolledo, J. F. (2023). Analysis of the Geotechnical Behavior of a Piled Raft in Tropical Lateritic Soil Based on Long-Term Monitoring of Columns, Piles, and Raft-Soil Interface. Canadian Geotechnical Journal, 61(4), 627–648. https://doi.org/10.1139/cgj-2022-0675
  • Bernardes, H. C., Sales, M. M., Machado, R. R., Cruz Junior, A. J. D., Cunha, R. P. D., Resende Angelim, R., & Rebolledo, J. F. R. (2022). Coupling hardening soil model and Ménard pressuremeter tests to predict pile behavior. European Journal of Environmental and Civil Engineering, 26(11), 5221–5240. Taylor & Francis. https://doi.org/10.1080/19648189.2021.1886180
  • Briaud, J. L. (2013). Ménard Lecture - The pressuremeter test: Expanding its use [Paper presentation]. In 18th International Conference on Soil Mechanics and Geotechnical Engineering., Paris. ISSMGE pp. 107–126.
  • Brinkgreve, R. B. J., Engin, E., & Swolfs, W. M. (2014). Plaxis 2D Anniversary Edition - Material Models Manual, Plaxis bv. Plaxis bv.
  • Burland, J. B., Broms, B. B., & de Mello, V. F. B. (1977). Behaviour of foundations and structures [Paper presentation]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan. 2: 495–536.
  • Cooke, R. W. (1986). Piled raft foundations on stiff clays - a contribution to design philosophy. Géotechnique, 36(2), 169–203. https://doi.org/10.1680/geot.1986.36.2.169
  • Cooke, R. W., Sillett, D. F., Bryden Smith, D. W., Smith, D. W. B., & Gooch, M. V, BRE. (1981). Some observations of the foundation loading and settlement of a multi-storey building on a piled raft foundation in London Clay. Proceedings of the Institution of Civil Engineers, 70(3), 433–460. https://doi.org/10.1680/iicep.1981.1783
  • Cunha, R. P., & Poulos, H. G. (2018). Importance of the Excavation Level on the Prediction of the Settlement Pattern from Piled Raft Analyses. Soils and Rocks, 41(1), 091–099. https://doi.org/10.28927/SR.411091
  • Cunha, R. P., Poulos, H. G., & Small, J. C. (2001). Investigation of design alternatives for a piled raft case history. Journal of Geotechnical and Geoenvironmental Engineering, 127(8), 635–641. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:8(635)
  • Cunha, R. P., Poulos, H. G., & Small, J. C. (2020). Some factors that influence the prediction of the behaviour of piled rafts via simplified (numerical) analyses. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 51(2), 22–29.
  • El Sharnouby, B., & Novak, M. (1990). Stiffness constants and interaction factors for vertical response of pile groups. Canadian Geotechnical Journal, 27(6), 813–822. https://doi.org/10.1139/t90-094
  • Engin, H. K., Septanika, E. G., & Brinkgreve, R. B. J. (2007). Improved embedded beam elements for the modelling of piles. In G.N. Pande and S. Pietruszczak (Eds.). 10th international symposium on numerical models in geomechanics (pp. 475–480). Taylor and Francis.
  • Fawaz, A., Boulon, M., & Flavigny, E. (2002). Parameters deduced from the pressuremeter test. Canadian Geotechnical Journal, 39(6), 1333–1340. https://doi.org/10.1139/t02-099
  • Franke, E., Lutz, B., & El-Mossallamy, Y. (1994). Measurements and numerical modelling of high-rise building foundations on Frankfurt clay. In Conference on Vertical and Horizontal Def. of Found. and Embankments (Vol. 40(2), pp. 1325–1336). ASCE Geotechnical Special Publication.
  • Gambin, M., Flavigny, E., & Boulon, M. (1996). Le module pressiométrique: Historique et modélisation. In XI Colloque Franco-Polonais en Mécanique des Sols et des Roches Appliquée, Université Technique de Gdansk, (pp. 53–60).
  • Ghalesari, A. T., & Choobbasti, A. J. (2016). Numerical analysis of settlement and bearing behaviour of piled raft in Babol clay. European Journal of Environmental and Civil Engineering, 22(8), 978–1003. https://doi.org/10.1080/19648189.2016.1229230
  • Granitzer, A.-N., & Tschuchnigg, F. (2021). Practice-oriented validation of embedded beam formulations in geotechnical engineering. Processes, 9(10), 1739–1767. https://doi.org/10.3390/pr9101739
  • Gusmão, A. D., Silva, A. C., & Sales, M. M. (2020). Foundation-structure interaction on high-rise buildings. Soils and Rocks, 43(3), 441–459. https://doi.org/10.28927/SR.433441
  • Hain, S. J., & Lee, I. K. (1978). The analysis of flexible raft-pile systems. Géotechnique, 28(1), 65–83. https://doi.org/10.1680/geot.1978.28.1.65
  • He, H., Li, S., Senetakis, K., Coop, M. R., & Liu, S. (2022). Influence of anisotropic stress path and stress history on stiffness of calcareous sands from Western Australia and the Philippines. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 197–209. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. https://doi.org/10.1016/j.jrmge.2021.03.015
  • Hooper, J. A. (1973). Observations on the behaviour of a piled-raft foundation on London clay. Proceedings of the Institution of Civil Engineers, 55(4), 855–877. https://doi.org/10.1680/iicep.1973.4144
  • Janda, T., Cunha, R. P., Kuklík, P., & Anjos, G. M. (2009). Three dimensional finite element analysis and back-analysis of CFA standard pile groups and piled rafts founded on tropical soil. Soils and Rocks, 32(1), 3–18. https://doi.org/10.28927/SR.321003
  • Jardine, R. J., Fourie, A., Maswoswe, J., & Burland, J. B. (1985). Field and laboratory measurements of soil stiffness [Paper presentation]. Proc. 11th Int. Conf. Soil Mech. Found. Eng., San Francisco (pp. 511–514).
  • Jardine, R. J., Potts, D. M., Fourie, A. B., & Burland, J. B. (1986). Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction. Géotechnique, 36(3), 377–396. https://doi.org/10.1680/geot.1986.36.3.377
  • Katzenbach, R., Arslan, U., & Moormann, C. (2000). Chapter 13: Piled raft foundation projects in Germany. In Design applications of raft foundations (1st ed., pp. 323–391). Thomas Telford Pub.
  • Katzenbach, R., & Leppla, S. (2015). Realistic Modelling of Soil-Structure Interaction for High-Rise Buildings. Procedia Engineering, 117(0), 162–171. Elsevier B.V. https://doi.org/10.1016/j.proeng.2015.08.137
  • Kirkpatrick, W. M., Khan, A. J., & Mirza, A. A. (1986). The effects of stress relief on some overconsolidated clays. Géotechnique, 36(4), 511–525. https://doi.org/10.1680/geot.1986.36.4.511
  • Kitiyodom, P., Matsumoto, T., & Kanefusa, N. (2004). Influence of reaction piles on the behaviour of a test pile in static load testing. Canadian Geotechnical Journal, 41(3), 408–420. https://doi.org/10.1139/t03-098
  • Kohgo, Y., Nakano, M., & Miyazaki, T. (1993). Theoretical aspects of constitutive modelling for unsaturated soils. Soils and Foundations, 33(4), 49–63. https://doi.org/10.3208/sandf1972.33.4_49
  • Lambe, T. W. (1973). Predictions in soil engineering. Géotechnique, 23(2), 151–202. https://doi.org/10.1680/geot.1973.23.2.151
  • Lee, S., Cheang, W., Swolfs, W., & Brinkgreve, R. (2003). Modelling of piled rafts with different pile models. In Numerical methods in geotechnical engineering (pp. 634–642). Taylor & Francis.
  • Mandolini, A., & Viggiani, C. (1997). Settlement of piled foundations. Géotechnique, 47(4), 791–816. https://doi.org/10.1680/geot.1997.47.4.791
  • Matsumoto, T., Fukumura, K., Pastsakorn, K., Horikoshi, K., & Oki, A. (2004). Experimental and analytical study on behaviour of model piled rafts in sand subjected to horizontal and moment loading. International Journal of Physical Modelling in Geotechnics, 4(3), 01–19. https://doi.org/10.1680/ijpmg.2004.040301
  • Mccabe, B. A., & Sheil, B. B. (2015). Pile group settlement estimation: Suitability of nonlinear interaction factors. International Journal of Geomechanics, 15(3), 1–11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000395
  • Mylonakis, G., & Gazetas, G. (1998). Settlement and additional internal forces of grouped piles in layered soil. Géotechnique, 48(1), 55–72. https://doi.org/10.1680/geot.1998.48.1.55
  • Nguyen, D. D. C., Jo, S. B., & Kim, D. S. (2013). Design method of piled-raft foundations under vertical load considering interaction effects. Computers and Geotechnics, 47, 16–27. Elsevier Ltd. https://doi.org/10.1016/j.compgeo.2012.06.007
  • O’Neill, M. W., & Reese, L. C. (1999). Drilled shafts: Construction procedures and design methods. FHA Publication No. FHWA-IF-99-025. Federal Highway Administration (FHA), U.S. Department of Transportation, Washington, D.C.
  • Patil, G., Choudhury, D., & Mondal, A. (2021). Three-dimensional soil–foundation–Superstructure interaction analysis of nuclear building supported by combined piled–raft system. International Journal of Geomechanics, 21(4). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001956
  • Poulos, H. G. (1968). Analysis of the settlement of pile groups. Géotechnique, 18(4), 449–471. https://doi.org/10.1680/geot.1968.18.4.449
  • Poulos, H. G. (1994). An approximate numerical analysis of pile-raft interaction. International Journal for Numerical and Analytical Methods in Geomechanics, 18(2), 73–92. https://doi.org/10.1002/nag.1610180202
  • Poulos, H. G. (2005). Piled Raft and Compensated Piled Raft Foundations for Soft Soil Sites [Paper presentation]. Advances in Designing and Testing Deep Foundations. American Society of Civil Engineers, Reston, VA (pp. 214–235).
  • Poulos, H. G. (2017). Tall building foundation design (1st ed.). CRC Press.
  • Poulos, H. G., & Bunce, G. (2008). Foundation Design for the Burj Dubai – The World’s Tallest Building [Paper presentation].6th International Conference on Case Histories in Geotechnical Engineering, Arlington, VA (pp. 1–16).
  • Poulos, H. G., Carter, J. P., & Small, J. C. (2001). Foundations and retaining structures - Research and practice [Paper presentation].15th International Conference on Soil Mechanics and Foundation Engineering. ISSMGE, Istanbul (pp. 2527–2606).
  • Poulos, H. G., & Davids, A. J. (2005). Foundation design for the Emirates Twin Towers, Dubai. Canadian Geotechnical Journal, 42(3), 716–730. https://doi.org/10.1139/t05-004
  • Poulos, H. G., & Davis, E. H. (1980). Pile foundation analysis and design. J.W. and Sons.
  • Rebolledo, J. F. R., León, R. F. P., & Camapum, J. (2019). Obtaining the mechanical parameters for the hardening soil model of tropical soils in the city of Brasília. Soils and Rocks, 42(1), 61–74. https://doi.org/10.28927/SR.421061
  • Reul, O. (2004). Numerical study of the bearing behavior of piled rafts. International Journal of Geomechanics, 4(2), 59–68. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(59)
  • Reul, O., & Randolph, M. F. (2003). Piled rafts in overconsolidated clay: Comparison of in situ measurements and numerical analyses. Géotechnique, 53(3), 301–315. https://doi.org/10.1680/geot.2003.53.3.301
  • Russo, G. (1998). Numerical analysis of piled rafts. International Journal for Numerical and Analytical Methods in Geomechanics, 22(6), 477–493. https://doi.org/10.1002/(SICI)1096-9853(199806)22:6%3C477::AID-NAG931%3E3.0.CO;2-H
  • Russo, G. (2013). Experimental investigations and analysis on different pile load testing procedures. Acta Geotechnica, 8(1), 17–31. https://doi.org/10.1007/s11440-012-0177-4
  • Russo, G., Abagnara, V., Poulos, H. G., & Small, J. C. (2013). Re-assessment of foundation settlements for the Burj Khalifa, Dubai. Acta Geotechnica, 8(1), 3–15. https://doi.org/10.1007/s11440-012-0193-4
  • Sadek, M., & Shahrour, I. (2004). A three dimensional embedded beam element for reinforced geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 28(9), 931–946. https://doi.org/10.1002/nag.357
  • Sales, M. M., & Curado, T. S. (2018). Interaction factor between piles: Limits on using the conventional elastic approach in pile group analysis. Soils and Rocks, 41(1), 049–060. https://doi.org/10.28927/SR.411049
  • Sales, M. M., Small, J. C., & Poulos, H. G. (2010). Compensated piled rafts in clayey soils: Behaviour, measurements and predictions. Canadian Geotechnical Journal, 47(3), 327–345. https://doi.org/10.1139/T09-106
  • Sawada, K., & Takemura, J. (2014). Centrifuge model tests on piled raft foundation in sand subjected to lateral and moment loads. Soils and Foundations, 54(2), 126–140. Elsevier. https://doi.org/10.1016/j.sandf.2014.02.005
  • Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics, Balkema, 1–16. https://doi.org/10.1201/9781315138206-27
  • Sheil, B. B., & Mccabe, B. A. (2015). Numerical modelling of pile foundation angular distortion. Soils and Foundations, 55(3), 614–625. Elsevier. https://doi.org/10.1016/j.sandf.2015.04.012
  • Sommer, H., Wittmann, P., & Ripper, P. (1985). Piled raft foundation of a tall building in Frankfurt clay [Paper presentation]. Proceedings of the 11th International Conference of Soil Mechanics and Foundation Engineering - ICSMFE, San Francisco, 4 (pp. 2253–2257).
  • Tang, Y., & Zhao, X. (2014). 121-story Shanghai Center Tower foundation re-analysis using a compensated pile foundation theory. The Structural Design of Tall and Special Buildings, 23(11), 854–879. https://doi.org/10.1002/tal.1087
  • Tschuchnigg, F., & Schweiger, H. F. (2015). The embedded pile concept – Verification of an efficient tool for modelling complex deep foundations. Computers and Geotechnics, 63, 244–254. Elsevier Ltd. https://doi.org/10.1016/j.compgeo.2014.09.008
  • Ulitsky, V. М., Shashkin, АG., Shashkin, КG., Shashkin, V. А., & Lisyuk, МB. (2015). Soil-structure interaction effects [Paper presentation]. XVI European Conference on Soil Mechanics and Geotechnical Engineering (pp. 4191–4196).
  • Watcharasawe, K., Jongpradist, P., & Kitiyodom, P. (2014). Numerical analyses of piled raft foundation in soft soil using 3D-FEM [Paper presentation]. International Conference on Advances in Civil Engineering for Sustainable Development, Nakhon Ratchasima, Thailand (pp. 219–224).
  • Zhao, X., Li, Z., Dai, G., Wang, H., Yin, Z., & Cao, S. (2022). Numerical study on the effect of large deep foundation excavation on underlying complex intersecting tunnels. Applied Sciences, 12(9), 4530. https://doi.org/10.3390/app12094530

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.