4
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of ice formation mechanisms occurring inside stylolite on limestone tilestone frost susceptibility

, , &
Received 10 Sep 2023, Accepted 06 Jun 2024, Published online: 20 Jun 2024

References

  • Baud, P., Rolland, A., Heap, M., Xu, T., Nicolé, M., Ferrand, T., Reuschlé, T., Toussaint, R., & Conil, N. (2016). Impact of stylolites on the mechanical strength of limestone. Tectonophysics, 690, 4–20. https://doi.org/10.1016/j.tecto.2016.03.004
  • Beach, A. (1979). Pressure solution as a metamorphic process in deformed terrigenous sedimentary rocks. Lithos, 12(1), 51–58. https://doi.org/10.1016/0024-4937(79)90062-8
  • Bellanger, M., Homand, F., & Remy, J. M. (1993). Water behavior in limestones as a function of pore structure: Application to frost resistance of some lorraine limestones. Engineering Geology, 36(1-2), 99–108. https://doi.org/10.1016/0013-7952(93)90022-5
  • Benavente, D., García del Cura, M. A., & García-Guinea, J. (2004). Role of pore structure in salt crystallisation in unsaturated porous stone. Journal of Crystal Growth, 260(3-4), 532–544. https://doi.org/10.1016/j.jcrysgro.2003.09.004
  • Bodeur, Y. (1994). The Upper Jurassic lithographic limestones of the Causse de Blandas-Montdardier (Languedoc, France) in their palaeostructural framework. GEOBIOS, 16, 219–225.
  • Chen, T. C., Yeung, M. R., & Mori, N. (2004). Effect of water saturation on deterioration of welded tuff due to freeze-thaw action. Cold Regions Science and Technology, 38(2-3), 127–136. https://doi.org/10.1016/j.coldregions.2003.10.001
  • Corn, S., Ienny, P., Dupuy, J. S., & Daridon, L. (2009). Identification des propriétés viscoélastique d’un PMMA par analyse vibratoire : comparaison entre différentes méthodes expérimentales. In: 19 ème Congrès Français de Mécanique. Marseille.
  • Defay, R., Prigogine, I., Bellemans, A., & Dh, E. (1966). Surface tension and absorption. Longmans e. London.
  • Deprez, M., De Kock, T., De Schutter, G., & Cnudde, V. (2020). A review on freeze-thaw action and weathering of rocks. Earth Science Reviews, 203, 103143. https://doi.org/10.1016/j.earscirev.2020.103143
  • Deprez, M., De Kock, T., De Schutter, G., & Cnudde, V. (2020). The role of ink-bottle pores in freeze-thaw damage of oolithic limestone. Construction and Building Materials, 246, 118515. https://doi.org/10.1016/j.conbuildmat.2020.118515
  • Ding, S., Jia, H., Zi, F., Dong, Y., & Yao, Y. (2020). Frost damage in tight sandstone: Experimental evaluation and interpretation of damage mechanisms. Materials, 13(20), 4617. https://doi.org/10.3390/ma13204617
  • Flugel, E. (2004). Microfacies of carbonate rocks. analysis, interpretation and application. Springer-Verlag.
  • Fogue-Djombou, Y. I., Corn, S., Clerc, L., Salze, D., & Garcia-Diaz, E. (2019). Freeze-thaw resistance of limestone roofing tiles assessed through impulse vibration monitoring and finite element modeling in relation to their microstructure. Construction and Building Materials, 205, 656–667. https://doi.org/10.1016/j.conbuildmat.2019.01.211
  • Gilpin, R. R. (1980). A model for prediction of ice lensing and frost heave in soils. Water Resources Research, 16(5), 918–930. https://doi.org/10.1029/WR016i005p00918
  • Heap, M., Reuschlé, T., Baud, P., Renard, F., & Iezzi, G. (2018). The permeability of stylolite-bearing limestone. Journal of Structural Geology, 116, 81–93. https://doi.org/10.1016/j.jsg.2018.08.007
  • Johannesson, B. (2010). Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures. Cement and Concrete Composites, 32(1), 73–83. https://doi.org/10.1016/j.cemconcomp.2009.09.001
  • Kubelka, P. (1932). No Zeitung für Elektrochemie.
  • Matala, S. (1995). Effects of carbonation on the pore structure of granulated blast furnace slag concrete. Helsinki University of Technology.
  • Nicholson, D. T., & Nicholson, F. H. (2000). Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering. Earth Surface Processes and Landforms, 25(12), 1295–1307. https://doi.org/10.1002/1096-9837(200011)
  • Ordóñez, S., Fort, R., & Garcia del Cura, M. A. (1997). Pore size distribution and the durability of a porous limestone. Quarterly Journal of Engineering Geology, 30(3), 221–230. https://doi.org/10.1144/GSL.QJEG.1997.030.P3.04
  • Peppin, S. S. L., & Style, R. W. (2012). The physics of frost heave and ice-lens growth. Vadose Zone Journal, 29, 49.
  • Prick, A. (1997). Critical degree of saturation as a threshold moisture level in frost weathering of limestones. Permafrost and Periglacial Processes, 8(1), 91–99. https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<91::AID-PPP238>3.0.CO;2-4
  • Railsback, L. B. (2001). An atlas of pressure dissolution features. http://www.gly.uga.edu/railsback/PDFintro1.html
  • Ruedrich, J., Kirchner, D., & Siegesmund, S. (2011). Physical weathering of building stones induced by freeze-thaw action: A laboratory long-term study. Environmental Earth Sciences, 63(7-8), 1573–1586. https://doi.org/10.1007/s12665-010-0826-6
  • Scherer, G. W. (1999). Crystallization in pores. Cement and Concrete Research, 29(8), 1347–1358. https://doi.org/10.1016/S0008-8846(99)00002-2
  • Scherer, G. W. (2006) Internal stress and cracking in stone and masonry. In: Measuring, monitoring and modeling concrete properties (pp 633–641). Springer.
  • Sciau, J. (2003). Dans les pas des Dinausaures des Causses : Inventaires des sites à empreintes. Association Paléontologique des Causses.
  • Stockhausen, N. (1981). Die dilatation hochporöser Festkörper bei Wasseraufnahme und Eisbildung.
  • Sun, Z., & Scherer, G. W. (2010). Pore size and shape in mortar by thermoporometry. Cement and Concrete Research, 40(5), 740–751. https://doi.org/10.1016/j.cemconres.2009.11.011
  • Tada, R., & Siever, R. (1989). Pressure solution during diagenesis. Annual Review of Earth and Planetary Sciences, 17(1), 89–118. https://doi.org/10.1146/annurev.ea.17.050189.000513
  • Török, Á., & Szemerey-Kiss, B. (2019). Freeze-thaw durability of repair mortars and porous limestone: Compatibility issues. Progress in Earth and Planetary Science, 6(42) https://doi.org/10.1186/s40645-019-0282-1
  • Toussaint, R., Aharonov, E., Koehn, D., Gratier, J.-P., Ebner, M., Baud, P., Rolland, A., & Renard, F. (2018). Stylolites: A review. Journal of Structural Geology, 114, 163–195. https://doi.org/10.1016/j.jsg.2018.05.003
  • Usherov-Marshak, A., & Sopov, V. (2002). Calorimetry of cement and concrete.
  • Viala, R., Placet, V., & Cogan, S. (2017). Détermination de propriétés constitutives de pièces à géométrie complexe en matériaux composites par méthode mixte numérique/expérimentale dynamique non-invasive. Journées Nationales sur les Composites, 2017. 77455.
  • Webber, J. B. W., Dore, J. C., Strange, J. H., Anderson, R., & Tohidi, B. (2007). Plastic ice in confined geometry: The evidence from neutron diffraction and NMR relaxation. Journal of Physics: Condensed Matter, 19(41), 415117. https://doi.org/10.1088/0953-8984/19/41/415117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.