1,157
Views
1
CrossRef citations to date
0
Altmetric
Articles

Characterization of Parkinson’s disease-related pathogenic TMEM230 mutants

, , , , , & show all
Pages 140-147 | Received 09 Jan 2018, Accepted 14 Mar 2018, Published online: 22 Mar 2018

References

  • Baumann H, Wolff S, Munchau A, Hagenah JM, Lohmann K, Klein C. 2017. Evaluating the role of TMEM230 variants in Parkinson’s disease. Parkinsonism Relat Disord. 35:100–101. doi: 10.1016/j.parkreldis.2016.12.015
  • Burre J, Sharma M, Sudhof TC. 2015. Definition of a molecular pathway mediating alpha-synuclein neurotoxicity. J Neurosci. 35:5221–5232. doi: 10.1523/JNEUROSCI.4650-14.2015
  • Carra S, Sangiorgio L, Pelucchi P, Cermenati S, Mezzelani A, Martino V, Palizban M, Albertini A, Gotte M, Kehler J, et al. 2018. Zebrafish Tmem230a cooperates with the Delta/Notch signaling pathway to modulate endothelial cell number in angiogenic vessels. J Cell Physiol. 233:1455–1467. doi: 10.1002/jcp.26032
  • Deng HX, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C, Cheng L, Zhai H, Deng S, Nuytemans K, et al. 2016. Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet. 48:733–739. doi: 10.1038/ng.3589
  • Fan TS, Lin CH, Lin HI, Chen ML, Wu RM. 2017. Lack of TMEM230 mutations in patients with familial and sporadic Parkinson’s disease in a Taiwanese population. Am J Med Genet B Neuropsychiatr Genet. 174:751–756. doi: 10.1002/ajmg.b.32576
  • Giri A, Mok KY, Jansen I, Sharma M, Tesson C, Mangone G, Lesage S, Bras JM, Shulman JM, Sheerin UM, et al. 2017. Lack of evidence for a role of genetic variation in TMEM230 in the risk for Parkinson’s disease in the caucasian population. Neurobiol Aging. 50:167.e11–167.e13. doi: 10.1016/j.neurobiolaging.2016.10.004
  • Guerreiro PS, Huang Y, Gysbers A, Cheng D, Gai WP, Outeiro TF, Halliday GM. 2013. LRRK2 interactions with alpha-synuclein in Parkinson’s disease brains and in cell models. J Mol Med (Berl). 91:513–522. doi: 10.1007/s00109-012-0984-y
  • Heo HY, Park JM, Kim CH, Han BS, Kim KS, Seol W. 2010. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Exp Cell Res. 316:649–656. doi: 10.1016/j.yexcr.2009.09.014
  • Ho DH, Kim H, Kim J, Sim H, Ahn H, Kim J, Seo H, Chung KC, Park BJ, Son I, et al. 2015. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol Brain. 8:54. doi: 10.1186/s13041-015-0145-7
  • Ibanez L, Dube U, Budde J, Black K, Medvedeva A, Davis AA, Perlmutter JS, Benitez BA, Cruchaga C. 2017. TMEM230 in Parkinson’s disease. Neurobiol Aging. 56:212.e1–212.e3. doi: 10.1016/j.neurobiolaging.2017.03.014
  • Kim MJ, Deng HX, Wong YC, Siddique T, Krainc D. 2017. The Parkinson’s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. 26:729–741.
  • Lee Y, Kim SG, Lee B, Zhang Y, Kim Y, Kim S, Kim E, Kang H, Han K. 2017. Striatal transcriptome and interactome analysis of Shank3-overexpressing mice reveals the connectivity between Shank3 and mTORC1 signaling. Front Mol Neurosci. 10:201. doi: 10.3389/fnmol.2017.00201
  • Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, et al. 2009. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron. 64:807–827. doi: 10.1016/j.neuron.2009.11.006
  • Mandemakers W, Quadri M, Stamelou M, Bonifati V. 2017. TMEM230: how does it fit in the etiology and pathogenesis of Parkinson’s disease? Mov Disord. 32:1159–1162. doi: 10.1002/mds.27061
  • Martin I, Dawson VL, Dawson TM. 2011. Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet. 12:301–325. doi: 10.1146/annurev-genom-082410-101440
  • Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B. 2000. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci. 20:6048–6054.
  • Piccoli G, Onofri F, Cirnaru MD, Kaiser CJ, Jagtap P, Kastenmuller A, Pischedda F, Marte A, von Zweydorf F, Vogt A, et al. 2014. Leucine-rich repeat kinase 2 binds to neuronal vesicles through protein interactions mediated by Its C-terminal WD40 Domain. Mol Cell Biol. 34:2147–2161. doi: 10.1128/MCB.00914-13
  • Rideout HJ, editor. 2017. Leucine Rich Repeat Kinase 2 (LRRK2). Vol. 14, Advances in neurobiology. Springer. doi: 10.1007/978-3-319-49969-7
  • Seol W. 2010. Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson’s disease. BMB Rep. 43:233–244. doi: 10.5483/BMBRep.2010.43.4.233
  • Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, et al. 2008. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 314:2055–2065. doi: 10.1016/j.yexcr.2008.02.015
  • Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA. 2005. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA. 102:18676–18681. doi: 10.1073/pnas.0508052102
  • Son JH, Chun HS, Joh TH, Cho S, Conti B, Lee JW. 1999. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci. 19:10–20.
  • Volpicelli-Daley LA, Abdelmotilib H, Liu Z, Stoyka L, Daher JP, Milnerwood AJ, Unni VK, Hirst WD, Yue Z, Zhao HT, et al. 2016. G2019S-LRRK2 expression augments alpha-synuclein sequestration into inclusions in neurons. J Neurosci. 36:7415–7427. doi: 10.1523/JNEUROSCI.3642-15.2016
  • Wei Q, Ou R, Zhou Q, Chen Y, Cao B, Gu X, Zhao B, Wu Y, Song W, Shang HF. 2018. TMEM230 mutations are rare in Han Chinese patients with autosomal dominant Parkinson's disease. Mol Neurobiol. 55:2851–2855. doi: 10.1007/s12035-017-0542-2
  • Xiao Q, Yang S, Le W. 2015. G2019s LRRK2 and aging confer susceptibility to proteasome inhibitor-induced neurotoxicity in nigrostriatal dopaminergic system. J Neural Transm (Vienna). 122:1645–1657. doi: 10.1007/s00702-015-1438-9