1,461
Views
11
CrossRef citations to date
0
Altmetric
Neurobiology & Physiology

Palmitate-induced autophagy liberates monounsaturated fatty acids and increases Agrp expression in hypothalamic cells

, , &
Pages 384-391 | Received 30 Oct 2019, Accepted 15 Nov 2019, Published online: 01 Dec 2019

References

  • Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, Shulman GI, et al. 2008. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature. 454(7206):846–851. doi: 10.1038/nature07181
  • Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. 2008. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 295(6):E1323–E1332. doi: 10.1152/ajpendo.90617.2008
  • Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, et al. 2009. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 119(9):2577–2589. doi: 10.1172/JCI36714
  • de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, Perlmann T. 2000. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 290(5499):2140–2144. doi: 10.1126/science.290.5499.2140
  • Dole VP. 1956. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest. 35(2):150–154. doi: 10.1172/JCI103259
  • Fick LJ, Fick GH, Belsham DD. 2011. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons. Biochem Biophys Res Commun. 413(3):414–419. doi: 10.1016/j.bbrc.2011.08.103
  • Geisler CE, Hepler C, Higgins MR, Renquist BJ. 2016. Hepatic adaptations to maintain metabolic homeostasis in response to fasting and refeeding in mice. Nutr Metab (Lond). 13:62. doi: 10.1186/s12986-016-0122-x
  • Jo YH, Su Y, Gutierrez-Juarez R, Chua S Jr. 2009. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol. 101(5):2305–2316. doi: 10.1152/jn.91294.2008
  • Jump DB, Tripathy S, Depner CM. 2013. Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr. 33:249–269. doi: 10.1146/annurev-nutr-071812-161139
  • Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, Singh R. 2011. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14(2):173–183. doi: 10.1016/j.cmet.2011.06.008
  • Kim S, Kim N, Park S, Jeon Y, Lee J, Yoo SJ, Lee JW, Moon C, Yu SW, Kim EK. 2019. Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance. Autophagy. 1–21. doi:10.1080/15548627.2019.1659616.
  • Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Bruning JC. 2009. Myd88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 10(4):249–259. doi: 10.1016/j.cmet.2009.08.013
  • Lam TK, Schwartz GJ, Rossetti L. 2005. Hypothalamic sensing of fatty acids. Nat Neurosci. 8(5):579–584. doi: 10.1038/nn1456
  • Lee J, Kim K, Yu SW, Kim EK. 2016. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/beta-catenin signaling in the hypothalamus. Mol Brain. 9(1):24. doi: 10.1186/s13041-016-0207-5
  • Liu K, Czaja MJ. 2013. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20(1):3–11. doi: 10.1038/cdd.2012.63
  • Lopez M, Tovar S, Vazquez MJ, Nogueiras R, Senaris R, Dieguez C. 2005. Sensing the fat: fatty acid metabolism in the hypothalamus and the melanocortin system. Peptides. 26(10):1753–1758. doi: 10.1016/j.peptides.2004.11.025
  • Maeda N, Funahashi T, Hibuse T, Nagasawa A, Kishida K, Kuriyama H, Nakamura T, Kihara S, Shimomura I, Matsuzawa Y. 2004. Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. Proc Natl Acad Sci U S A. 101(51):17801–17806. doi: 10.1073/pnas.0406230101
  • Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, et al. 2009. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. The J Neurosci Off J Soc Neurosci. 29(2):359–370. doi: 10.1523/JNEUROSCI.2760-08.2009
  • Nunes EA, Rafacho A. 2017. Implications of palmitoleic acid (palmitoleate) on glucose homeostasis, insulin resistance and diabetes. Curr Drug Targets. 18(6):619–628. doi: 10.2174/1389450117666151209120345
  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. 2002. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 51(2):271–275. doi: 10.2337/diabetes.51.2.271
  • Oh YT, Oh HH, Nguyen AK, Choi CS, Youn JH. 2016. Circulating free fatty acids inhibit food intake in an oleate-specific manner in rats. Physiol Behav. 167:194–201. doi: 10.1016/j.physbeh.2016.09.015
  • Rosen ED, Spiegelman BM. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 444(7121):847–853. doi: 10.1038/nature05483
  • Schulze RJ, Sathyanarayan A, Mashek DG. 2017. Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids. 1862(10 Pt B):1178–1187. doi: 10.1016/j.bbalip.2017.06.008
  • Schwinkendorf DR, Tsatsos NG, Gosnell BA, Mashek DG. 2011. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int J Obes. 35(3):336–344. doi: 10.1038/ijo.2010.159
  • Singh R. 2011. Hypothalamic lipophagy and energetic balance. Aging (Albany NY). 3(10):934–942. doi: 10.18632/aging.100393
  • Singh R, Cuervo AM. 2012. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012:282041. doi: 10.1155/2012/282041
  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. 2009. Autophagy regulates lipid metabolism. Nature. 458(7242):1131–1135. doi: 10.1038/nature07976
  • Spector R. 1988. Fatty acid transport through the blood-brain barrier. J Neurochem. 50(2):639–643. doi: 10.1111/j.1471-4159.1988.tb02958.x
  • Sprangers F, Romijn JA, Endert E, Ackermans MT, Sauerwein HP. 2001. The role of free fatty acids (FFA) in the regulation of intrahepatic fluxes of glucose and glycogen metabolism during short-term starvation in healthy volunteers. Clin Nutr. 20(2):177–179. doi: 10.1054/clnu.2000.0372
  • Varga T, Czimmerer Z, Nagy L. 2011. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 1812(8):1007–1022. doi: 10.1016/j.bbadis.2011.02.014
  • Wakil SJ, Abu-Elheiga LA. 2009. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 50(Suppl S):138–S143. doi: 10.1194/jlr.R800079-JLR200
  • Wang CW. 2016. Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta. 1861(8 Pt B):793–805. doi: 10.1016/j.bbalip.2015.12.010
  • Wrighton KH. 2015. Lipid metabolism: fatty acids on the move. Nat Rev Mol Cell Biol. 16(4):205. doi: 10.1038/nrm3972