1,457
Views
7
CrossRef citations to date
0
Altmetric
Neurobiology & Physiology

Analysis of α-synuclein levels related to LRRK2 kinase activity: from substantia nigra to urine of patients with Parkinson’s disease

, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 28-36 | Received 14 Oct 2020, Accepted 25 Jan 2021, Published online: 17 Feb 2021

References

  • Adamiak U, Kaldonska M, Klodowska-Duda G, Wyska E, Safranow K, Bialecka M, Gawronska-Szklarz B. 2010. Pharmacokinetic-pharmacodynamic modeling of levodopa in patients with advanced Parkinson disease. Clin Neuropharmacol. 33(3):135–141. eng.
  • Atik A, Stewart T, Zhang J. 2016. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol. 26(3):410–418. eng.
  • Bae E-J, Kim D-K, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, et al. 2018. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun. 9(1):3465.
  • Beitz JM. 2014. Parkinson’s disease: a review. Front Biosci (Schol Ed). 6:65–74. eng.
  • Bieri G, Brahic M, Bousset L, Couthouis J, Kramer NJ, Ma R, Nakayama L, Monbureau M, Defensor E, Schüle B, et al. 2019. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 137(6):961–980. eng.
  • Brannan T, Yahr MD. 1995. Comparative study of selegiline plus L-dopa-carbidopa versus L-dopa-carbidopa alone in the treatment of Parkinson’s disease. Ann Neurol. 37(1):95–98. eng.
  • Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, et al. 2017. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 357(6357):1255–1261. eng.
  • Daniel SE, Lees AJ. 1993. Parkinson’s Disease Society Brain Bank, London: overview and research. J Neural Transm Suppl. 39:165–172. eng.
  • Davis TL, Roznoski M, Burns RS. 1995. Effects of tolcapone in Parkinson’s patients taking L-dihydroxyphenylalanine/carbidopa and selegiline. Mov Disord. 10(3):349–351. eng.
  • Fraser KB, Moehle MS, Alcalay RN, West AB. 2016. Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology. 86(11):994–999. eng.
  • Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, West AB. 2016. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov Disord. 31(10):1543–1550. eng.
  • Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K, Brahic M. 2012. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol. 72(4):517–524. eng.
  • Fussi N, Höllerhage M, Chakroun T, Nykänen N-P, Rösler TW, Koeglsperger T, Wurst W, Behrends C, Höglinger GU. 2018. Exosomal secretion of α-synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death Dis. 9(7):757.
  • Hijaz BA, Volpicelli-Daley LA. 2020. Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener. 15(1):19.
  • Ishii R, Tokuda T, Tatebe H, Ohmichi T, Kasai T, Nakagawa M, Mizuno T, El-Agnaf OMA. 2015. Decrease in plasma levels of α-synuclein is evident in patients with Parkinson’s disease after elimination of heterophilic antibody interference. PloS One. 10(4):e0123162.
  • Jang J, Jeong S, Lee SI, Seol W, Seo H, Son I, Ho DH. 2018. Oxidized DJ-1 levels in urine samples as a putative biomarker for Parkinson’s disease. Parkinsons Dis. 2018:1241757. eng.
  • Kim WS, Kågedal K, Halliday GM. 2014. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther. 6(5):73–73. eng.
  • Klein C, Westenberger A. 2012. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2(1):a008888–a008888. eng.
  • Koehler NKU, Stransky E, Meyer M, Gaertner S, Shing M, Schnaidt M, Celej MS, Jovin TM, Leyhe T, Laske C, et al. 2015. Alpha-synuclein levels in blood plasma decline with healthy aging. PloS One. 10(4):e0123444–e0123444. eng.
  • Lee H-J, Baek SM, Ho D-H, Suk J-E, Cho E-D, Lee S-J. 2011. Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers. Exp Mol Med. 43(4):216–222.
  • Lee AJ, Wang Y, Alcalay RN, Mejia-Santana H, Saunders-Pullman R, Bressman S, Corvol JC, Brice A, Lesage S, Mangone G, et al. 2017. Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry. Mov Disord. 32(10):1432–1438. eng.
  • Marder K, Wang Y, Alcalay RN, Mejia-Santana H, Tang M-X, Lee A, Raymond D, Mirelman A, Saunders-Pullman R, Clark L, et al. 2015. Age-specific penetrance of LRRK2 G2019S in the Michael J. Fox Ashkenazi Jewish LRRK2 Consortium. Neurology. 85(1):89–95. eng.
  • Marques O, Outeiro TF. 2012. Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis. 3(7):e350–e350.
  • Nam D, Lee J-Y, Lee M, Kim J, Seol W, Son I, Ho DH. 2020. Detection and assessment of α-synuclein oligomers in the urine of Parkinson’s disease patients. J Parkinsons Dis. 10:981–991.
  • Opara J, Małecki A, Małecka E, Socha T. 2017. Motor assessment in Parkinson`s disease. Ann Agric Environ Med. 24(3):411–415. eng.
  • Schapansky J, Khasnavis S, DeAndrade MP, Nardozzi JD, Falkson SR, Boyd JD, Sanderson JB, Bartels T, Melrose HL, LaVoie MJ. 2018. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiol Dis. 111:26–35. eng.
  • Wu Q, Takano H, Riddle DM, Trojanowski JQ, Coulter DA, Lee VM. 2019. α-Synuclein (αSyn) preformed fibrils induce endogenous αSyn aggregation, compromise synaptic activity and enhance synapse loss in cultured excitatory hippocampal neurons. J Neurosci. 39(26):5080–5094. eng.
  • Zhang X, Wesén E, Kumar R, Bernson D, Gallud A, Paul A, Wittung-Stafshede P, Esbjörner EK. 2020. Correlation between cellular uptake and cytotoxicity of fragmented α-synuclein amyloid fibrils suggests intracellular basis for toxicity. ACS Chem Neurosci. 11(3):233–241.