1,727
Views
2
CrossRef citations to date
0
Altmetric
Signaling & Biomolecules

Melittin-derived peptides exhibit variations in cytotoxicity and antioxidant, anti-inflammatory and allergenic activities

, , , , & ORCID Icon
Pages 158-165 | Received 14 Apr 2022, Accepted 05 Jul 2022, Published online: 18 Jul 2022

References

  • Ahmed MB, Islam SU, Lee YS. 2020. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Animal Cells Syst (Seoul). 24:44–52.
  • Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. 2014. Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198.
  • Aruoma OI. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 75:199–212.
  • Atanasov AG, Zotchev SB, Dirsch VM. International Natural Product Sciences T, Supuran C T. 2021. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discovery. 20:200–216.
  • Brieger K, Schiavone S, MillerJr.FJ, Krause KH. 2012. Reactive oxygen species: from health to disease. Swiss Med Wkly. 142:13659–13673.
  • Cambronero-Urena A, Choi S, Choi S, Kim KK, Kim EM. 2021. Polyhexamethylene guanidine phosphate, chloromethylisothiazolinone, and particulate matter are dispensable for stress granule formation in human airway epithelial cells. Animal Cells Syst (Seoul). 25:146–151.
  • Carpena M, Nunez-Estevez B, Soria-Lopez A, Simal-Gandara J. 2020. Bee venom: An updating review of Its bioactive molecules and Its health applications. Nutrients. 12:3360–3387.
  • Checa J, Aran JM. 2020. Reactive oxygen species: Drivers of physiological and pathological processes. J Inflamm Res. Volume 13:1057–1073.
  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9:7204–7218.
  • Cherniack EP, Govorushko S. 2018. To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon. 154:74–78.
  • Ciesielska A, Matyjek M, Kwiatkowska K. 2021. Tlr4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 78:1233–1261.
  • Dorrington MG, Fraser IDC. 2019. NF-κB Signaling in macrophages: Dynamics, crosstalk, and signal integration. Front Immunol. 10:705–717.
  • Forman HJ, Zhang H. 2021. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discovery. 20:689–709.
  • Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun L, Kim SY, Wiedman GR, Hristova K, Wimley WC. 2021. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol. 193:114769–114816.
  • Hong J, Lu X, Deng Z, Xiao S, Yuan B, Yang K. 2019. How melittin inserts into cell membrane: conformational changes, inter-peptide cooperation, and disturbance on the membrane. Molecules. 24:1775–1792.
  • Lee G, Bae H. 2016. Anti-Inflammatory applications of melittin, a major component of Bee venom: detailed mechanism of action and adverse effects. Molecules. 21:616–626.
  • Lee HS, Kim YS, Lee KS, Seo HS, Lee CY, Kim KK. 2021. Detoxification of Bee venom increases Its anti-inflammatory activity and decreases Its cytotoxicity and allergenic activity. Appl Biochem Biotechnol. 193:4068–4082.
  • Liang M, Wang Z, Li H, Cai L, Pan J, He H, Wu Q, Tang Y, Ma J, Yang L. 2018. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol. 115:315–328.
  • Lin TY, Hsieh CL. 2020. Clinical applications of Bee venom acupoint injection. Toxins (Basel). 12:618–643.
  • Liu T, Zhang L, Joo D, Sun SC. 2017. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2:17023–17032.
  • Lu YC, Yeh WC, Ohashi PS. 2008. Lps/TLR4 signal transduction pathway. Cytokine. 42:145–151.
  • Maitip J, Mookhploy W, Khorndork S, Chantawannakul P. 2021. Comparative study of antimicrobial properties of Bee venom extracts and melittins of honey bees. Antibiotics (Basel). 10:1503–1517.
  • Orsolic N. 2012. Bee venom in cancer therapy. Cancer Metastasis Rev. 31:173–194.
  • Sahoo N, Manchikanti P, Dey S. 2010. Herbal drugs: standards and regulation. Fitoterapia. 81:462–471.
  • Scialo F, Fernandez-Ayala DJ, Sanz A. 2017. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol. 8:428–435.
  • Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. 2007. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther. 115:246–270.
  • Standiford TJ. 2000. Anti-inflammatory cytokines and cytokine antagonists. Curr Pharm Des. 6:633–649.
  • Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. 2018. Antioxidant and oxidative stress: A mutual interplay in Age-related diseases. Front Pharmacol. 9:1162.
  • Tapiero H, Mathe G, Couvreur P, Tew KD. 2002. Ii. glutamine and glutamate. Biomed Pharmacother. 56:446–457.
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 39:44–84.
  • Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier JM, Fajloun Z. 2019. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules. 24:2779–3010.
  • Wu KK. 2021. Control of mesenchymal stromal cell senescence by tryptophan metabolites. Int J Mol Sci. 22:697–711.
  • Zhang S, Liu Y, Ye Y, Wang XR, Lin LT, Xiao LY, Zhou P, Shi GX, Liu CZ. 2018. Bee venom therapy: potential mechanisms and therapeutic applications. Toxicon. 148:64–73.