1,647
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow

, , &

References

  • Balachandar, S., & Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133. doi: 10.1146/annurev.fluid.010908.165243
  • Blasco, J., Calzada, M. C., & Marin, M. (2009). A fictitious domain, parallel numerical method for rigid particulate flows. Journal of Computational Physics, 228, 7596–7613. doi: 10.1016/j.jcp.2009.07.010
  • Borazjani, I., Ge, L., Le, T., & Sotiropoulos, F. (2013). A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Computers & Fluids, 77, 76–96. doi: 10.1016/j.compfluid.2013.02.017
  • Clausen, J. R., Reasor, D. A.Jr. & Aidun, C. K. (2010). Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture. Computer Physics Communications, 181, 1013–1020. doi: 10.1016/j.cpc.2010.02.005
  • Do-Quang, M., Amberg, G., Brethouwer, G., & Johansson, A. V. (2014). Simulation of finite-size fibers in turbulent channel flows. Physical Review E, 89, 013006. doi: 10.1103/PhysRevE.89.013006
  • Gao, H., Li, H., & Wang, L. P. (2013). Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Computers & Mathematics with Applications, 65, 194–210. doi: 10.1016/j.camwa.2011.06.028
  • Glowinski, R., Pan, T. W., Hesla, T. I., & Joseph, D. D. (1999). A distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow, 25, 755–794. doi: 10.1016/S0301-9322(98)00048-2
  • Hoyas, S., & Jimenez, J. (2008). Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Physics of Fluids, 20, 101511. doi: 10.1063/1.3005862
  • Hu, H. H., Patankar, A., & Zhu, M. Y. (2001). Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. Journal of Computational Physics, 169, 427–462. doi: 10.1006/jcph.2000.6592
  • Kidanemariam, A. G., Chan-Braun, C., Doychev, T., & Uhlmann, M. (2013). Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New Journal of Physics, 15, 025031. doi: 10.1088/1367-2630/15/2/025031
  • Ladd, A. J. C. (1994). Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1.Theoretical foundation. Journal of Fluid Mechanics, 271, 285–309. doi: 10.1017/S0022112094001771
  • Lucci, F., Ferrante, A., & Elghobashi, S. (2010). Modulation of isotropic turbulence by particles of Taylor length-scale size. Journal of Fluid Mechanics, 650, 5–55. doi: 10.1017/S0022112009994022
  • Pan, Y., & Banerjee, S. (1997). Numerical investigation of the effects of large particles on wall turbulence. Physics of Fluids, 9, 3786–3807. doi: 10.1063/1.869514
  • Shao, X. M., Wu, T. H., & Yu, Z. S. (2012). Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. Journal of Fluid Mechanics, 693, 319–344. doi: 10.1017/jfm.2011.533
  • Shao, X. M., Yu, Z. S., & Sun, B. (2008). Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers. Physics of Fluids, 20, 103307. doi: 10.1063/1.3005427
  • Tai, C. H., Zhao, Y., & Liew, K. M. (2005). Parallel computation of unsteady incompressible viscous flows around moving rigid bodies using an immersed object method with overlapping grids. Journal of Computational Physics, 207, 151–172. doi: 10.1016/j.jcp.2005.01.011
  • Ten Cate, A., Derksen, J. J., Portela, L. M., & Van den Akker, H. E. A. (2004). Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. Journal of Fluid Mechanics, 519, 233–271. doi: 10.1017/S0022112004001326
  • Tryggvason, G. (2010). Virtual motion of real particles. Journal of Fluid Mechanics, 650, 1–4. doi: 10.1017/S0022112010000765
  • Uhlmann, M. (2003). Simulation of particulate flows on multi-processor machines with distributed memory. CIEMAT Technical Report No. 1039, Madrid, Spain.
  • Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209, 448–476. doi: 10.1016/j.jcp.2005.03.017
  • Uhlmann, M. (2008). Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Physics of Fluids, 20, 053305. doi: 10.1063/1.2912459
  • Wang, S., He, G., & Zhang, X. (2013). Parallel computing strategy for a flow solver based on immersed boundary method and discrete stream-function formulation. Computers & Fluids, 88, 210–224. doi: 10.1016/j.compfluid.2013.09.001
  • Wang, Z. L., Fan, J. R., & Luo, K. (2008). Parallel computing strategy for the simulation of particulate flows with immersed boundary method. Science in China Series E: Technological Sciences, 51, 1169–1176. doi: 10.1007/s11431-008-0144-3
  • Wesseling, P. (1992). An introduction to multigrid methods. New York, US: John Wiley & Sons.
  • Yildirim, B., Lin, S., Mathur, S., & Murthy, J. Y. (2013). A parallel implementation of fluid–solid interaction solver using an immersed boundary method. Computers & Fluids, 86, 251–274. doi: 10.1016/j.compfluid.2013.06.032
  • Yu, Z. S., Phan-Thien, N., & Tanner, R. I. (2004). Dynamical simulation of sphere motion in a vertical tube. Journal of Fluid Mechanics, 518, 61–93. doi: 10.1017/S0022112004000771
  • Yu, Z. S., & Shao, X. M. (2007). A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics, 227, 292–314. doi: 10.1016/j.jcp.2007.07.027
  • Yu, Z. S., & Shao, X. M. (2010). Direct numerical simulation of particulate flows with a fictitious domain method. International Journal of Multiphase Flow, 36, 127–134. doi: 10.1016/j.ijmultiphaseflow.2009.10.001
  • Yu, Z. S., Shao, X. M., & Wachs, A. (2006). A fictitious domain method for particulate flows with heat transfer. Journal of Computational Physics, 217, 424–452. doi: 10.1016/j.jcp.2006.01.016