1,489
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The effect of aspect ratio and axial magnetic field on thermocapillary convection in liquid bridges with a deformable free-surface

, , , &
Pages 17-29 | Received 15 Apr 2015, Accepted 25 Sep 2015, Published online: 10 Nov 2015

References

  • Chen, S. X., & Li, M. W. (2008). Flow instability of buoyant-Marangoni convection in the LEC GaAs melt. Science in China Series E: Technological Sciences, 51, 397–406. doi:10.1007/s11431-008-0042-8
  • Chokri, M., Zouhaier, H., Mohamed, O., & Khlifa, M. (2010). A moving grid model for simulation of free surface behavior induced by horizontal cylinders exit and entry. Engineering Applications of Computational Fluid Mechanics, 4, 260–275. doi:10.1080/19942060.2010.11015315
  • Dold, P., Cröll, A., Lichtensteiger, M., Kaiser, T., & Benz, K. W. (2001). Floating zone growth of silicon in magnetic fields. IV. rotating magnetic fields. Journal of Crystal Growth, 231(1), 95–106. doi:10.1016/S0022-0248(01)01491-9
  • Jaber, T. J., Saghir, M. Z., & Viviani, A. (2009). Three-dimensional modelling of GeSi growth in presence of axial and rotating magnetic fields. European Journal of Mechanics B/Fluids, 28, 214–223. 10.1016/j.euromechflu.2008.07.001 doi: 10.1016/j.euromechflu.2008.07.001
  • Lappa, M. (2005). Analysis of flow instabilities in convex and concave floating zones heated by an equatorial ring under microgravity conditions. Computers & Fluids, 34, 743–770. doi:10.1016/j.compfluid.2004.01.003
  • Lappa, M., & Savino, R. (2002). 3D analysis of crystal/melt interface shape and Marangoni flow instability in solidifying liquid bridges. Journal of Computational Physics, 180, 751–774. doi:10.1006/jcph.2002.7131
  • Lappa, M., Savino, R., & Monti, R. (2001). Three-dimensional numerical simulation of Marangoni instabilities in non-cylindrical liquid bridges in microgravity. International Journal of Heat and Mass Transfer, 44, 1983–2003. 10.1016/S0017-9310(00)00243-X doi: 10.1016/S0017-9310(00)00243-X
  • Liang, R. Q., Yang, S., & Li, J. Z. (2014). Thermocapillary convection in floating zone with axial magnetic fields. Microgravity Science and Technology, 25, 285–293. doi:10.1007/s12217-013-9353-x
  • Melnikov, D. E., Shevtsova, V., Yano, T., & Nishino, K. (2015). Modeling of the experiments on the Marangoni convection in liquid bridges in weightlessness for a wide range of aspect ratios. International Journal of Heat and Mass Transfer, 87, 119–127. doi:10.1016/j.ijheatmasstransfer.2015.03.016
  • Sankar, M., Venkatachalappa, M., & Do, Y. (2011). Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure. International Journal of Heat and Fluid Flow, 32, 402–412. doi:10.1016/j.ijheatfluidflow.2010.12.001
  • Schwabe, D., & Frank, S. (1999). Experiments on the transition to chaotic thermocapillary flow in floating zones under microgravity. Advances in Space Research, 24, 1391–1396. doi:10.1016/S0273-1177(99)00751-6
  • Sim, B. C., Kim, W. S., & Zebib, A. (2004a). Axisymmetric thermocapillary convection in open cylindrical annuli with deforming interfaces. International Journal of Heat and Mass Transfer, 47, 5365–5373. 10.1016/j.ijheatmasstransfer.2004.03.031 doi: 10.1016/j.ijheatmasstransfer.2004.03.031
  • Sim, B. C., Kim, W. S., & Zebib, A. (2004b). Dynamic free-surface deformations in axisymmetric liquid bridges. Advances in Space Research, 34, 1627–1634. 10.1016/j.asr.2004.09.003 doi: 10.1016/j.asr.2004.09.003
  • Takagi, Y., Okano, Y., & Dost, S. (2012). A numerical simulation study on the effects of crucible rotation and magnetic fields in growth of SiGe by the traveling heater method. ASME Journal of Heat Transfer, 134(1), 012301. 10.1115/1.4004803 doi: 10.1115/1.4004803
  • Yang, S., Liang, R. Q., Yan, F. S., Gao, T. Y., & Feng, Y. T. (2015). Thermocapillary convection and surface fluctuation in a liquid bridge under lateral vibrations. Microgravity Science and Technology, 27(1), 1–10. 10.1007/s12217-014-9407-8 doi: 10.1007/s12217-014-9407-8
  • Yano, T., Nishino, K., Kawamura, H., Ueno, I., & Matsumoto, S. (2015). Instability and associated roll structure of Marangoni convection in high Prandtl number liquid bridge with large aspect ratio. Physics of Fluids, 27, 024108. doi:10.1063/1.4908042
  • Yao, L. P., Zeng, Z., Chen, J. Q., & Li, L. (2012). Investigation of convection control under the non-uniform RMF in a liquid bridge. Procedia Engineering, 31, 659–664. 10.1016/j.proeng.2012.01.1082 doi: 10.1016/j.proeng.2012.01.1082
  • Yao, L. P., Zeng, Z., & Li, X. H. (2011). Effects of rotating magnetic fields on thermocapillary flow in a floating half-zone. Journal of Crystal Growth, 316(1), 177–184. doi:10.1016/j.jcrysgro.2010.12.065
  • Zeng, Z., Mizuseki, H., Simamura, K., Fukuda, T., Higashino, K., & Kawazoe, Y. (2001). Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity. International Journal of Heat and Mass Transfer, 44, 3765–3774. doi:10.1016/S0017-9310(01)00012-6
  • Zhou, L., Liu, D. Y., & Ou, C. Q. (2011). Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127–140. 10.1080/19942060.2011.11015357 doi: 10.1080/19942060.2011.11015357
  • Zhou, X. M., & Huai, X. L. (2015a). Free surface deformation of thermo-solutocapillary convection in axisymmetric liquid bridge. Microgravity Science and Technology, 27(1), 39–47. doi:10.1007/s12217-014-9411-z
  • Zhou, X. M., & Huai, X. L. (2015b). Thermosolutocapillary convection in an open rectangular cavity with dynamic free surface. Journal of Heat Transfer, 137, 082901. 10.1115/1.4029270 doi: 10.1115/1.4029270
  • Zhou, X. M., & Huang, H. L. (2010). MHD effects on the instability of thermocapillary convection in two-layer fluid system. International Journal of Heat and Mass Transfer, 53, 5827–5834. doi:10.1016/j.ijheatmasstransfer.2010.08.001