1,954
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effects of the Cattaneo–Christov heat flux model on peristalsis

, , , &
Pages 373-383 | Received 10 Nov 2015, Accepted 02 Apr 2016, Published online: 06 May 2016

References

  • Abbasi, F. M., Hayat, T., & Ahmad, B. (2015). Peristaltic transport of copper-water nanofluid saturating porous medium. Physica E: Low-dimensional Systems and Nanostructures, 67, 47–53. doi:10.1016/j.physe.2014.11.002
  • Abbasi, F. M., Hayat, T., & Alsaedi, A. (2015). Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. Journal of Magnetism and Magnetic Materials, 382, 104–110. 10.1016/j.jmmm.2015.01.040 doi: 10.1016/j.jmmm.2015.01.040
  • Abd elmaboud, Y., & Mekheimer, K. S. (2011). Non-linear peristaltic transport of a second-order fluid through a porous medium. Applied Mathematical Modelling, 35, 2695–2710. doi:10.1016/j.apm.2010.11.031
  • Ali, N., & Hayat, T. (2007). Peristaltic motion of a Carreau fluid in an asymmetric channel. Applied Mathematics and Computation, 193, 535–552. doi:10.1016/j.amc.2007.04.010
  • Ali, N., Javid, K., Sajid, M., Zaman, A., & Hayat, T. (2016). Numerical simulations of Oldroyd 8-constant fluid flow and heat transfer in a curved channel. International Journal of Heat and Mass Transfer, 94, 500–508. doi:10.1016/j.ijheatmasstransfer.2015.11.066
  • Ali, N., Sajid, M., Javed, T., & Abbas, Z. (2010). Heat transfer analysis of peristaltic flow in a curved channel. International Journal of Heat and Mass Transfer, 53, 3319–3325. doi:10.1016/j.ijheatmasstransfer.2010.02.036
  • Christov, C. I. (2009). On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481–486. doi:10.1016/j.mechrescom.2008.11.003
  • Elnaby, M. A. A., & Haroun, M. H. (2008). A new model for study the effect of wall properties on peristaltic transport of a viscous fluid. Communications in Nonlinear Science and Numerical Simulation, 13, 752–762. 10.1016/j.cnsns.2006.07.007 doi: 10.1016/j.cnsns.2006.07.007
  • Fu, C., Uddin, M., & Curley, A. (2016). Insights derived from CFD studies on the evolution of planar wall jets. Engineering Applications of Computational Fluid Mechanics, 10, 44–56. doi:10.1080/19942060.2015.1082505
  • Gad, N. S. (2014). Effects of hall currents on peristaltic transport with compliant walls. Applied Mathematics and Computation, 235, 546–554. doi:10.1016/j.amc.2014.02.081
  • Haddad, S. A. M. (2014). Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. International Journal of Heat and Mass Transfer, 68, 659–668. doi:10.1016/j.ijheatmasstransfer.2013.09.039
  • Han, S., Zheng, L., Li, C., & Zhang, X. (2014). Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Applied Mathematics Letters, 38, 87–93. doi:10.1016/j.aml.2014.07.013
  • Hayat, T., Imtiaz, M., Alsaedi, A., & Almezal, S. (2016). On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions. Journal of Magnetism and Magnetic Materials, 401, 296–303. doi:10.1016/j.jmmm.2015.10.039
  • Hayat, T., Rafiq, M., Ahmad, B., & Yasmin, H. (2015). Effect of melting heat transfer on peristalsis in the presence of thermal radiation and Joule heating. International Journal of Biomathematics, 8. doi:10.1142/S1793524515500734
  • Hayat, T., Tanveer, A., Yasmin, H., & Alsaadi, F. (2015). Simultaneous effects of Hall current and thermal deposition in peristaltic transport of Eyring-Powell fluid. International Journal of Biomathematics, 8(2). doi:10.1142/S1793524515500242
  • Hina, S., Hayat, T., Asghar, S., & Hendi, A. A. (2012). Influence of compliant walls on peristaltic motion with heat/mass transfer and chemical reaction. International Journal of Heat and Mass Transfer, 55, 3386–3394. 10.1016/j.ijheatmasstransfer.2012.02.074 doi: 10.1016/j.ijheatmasstransfer.2012.02.074
  • Jalil, M., Asghar, S., & Imran, S. M. (2013). Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream. International Journal of Heat and Mass Transfer, 65, 73–79. doi:10.1016/j.ijheatmasstransfer.2013.05.049
  • Javed, M., Hayat, T., & Alsaedi, A. (2014). Peristaltic flow of burgers’ fluid with compliant walls and heat transfer. Applied Mathematics and Computation, 244, 654–671. doi:10.1016/j.amc.2014.07.009
  • Khan, J. A., Mustafa, M., Hayat, T., & Alsaedi, A. (2015). Numerical study of Cattaneo-Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLOS One. doi:10.1371/journal.pone.0137363
  • Latham, T. W. (1966). Fluid motion in peristaltic pump (MS Thesis). Massachusetts Institute of Technology, Cambridge, MA. Retrieved from http://hdl.handle.net/1721.1/17282
  • Mustafa, M. (2015). Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Advances. doi:10.1063/1.4917306
  • Mustafa, M., Abbasbandy, S., Hina, S., & Hayat, T. (2014). Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with dufour and soret effects. Journal of the Taiwan Institute of Chemical Engineers, 45, 308–316. doi:10.1016/j.jtice.2013.07.010
  • Özkan, F., Wenka, A., Hansjosten, E., Pfeifer, P., & Kraushaar-Czarnetzki, B. (2016). Numerical investigation of interfacial mass transfer in two phase flows using the VOF method. Engineering Applications of Computational Fluid Mechanics, 10, 100–110. doi:10.1080/19942060.2015.1061555
  • Riaz, A., Nadeem, S., Ellahi, R., & Akbar, N. S. (2014). The influence of wall flexibility on unsteady peristaltic flow of Prandtl fluid in a three dimensional rectangular duct. Applied Mathematics and Computation, 241, 389–400. doi:10.1016/j.amc.2014.04.046
  • Salahuddin, T., Malik, M. Y., Hussain, A., Bilal, S., & Awais, M. (2016). MHD flow of Cattanneo–Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach. Journal of Magnetism and Magnetic Materials, 401, 991–997. doi:10.1016/j.jmmm.2015.11.022
  • Shapiro, A. H., Jafferin, M. Y., & Weinberg, S. L. (1969). Peristaltic pumping with long wavelengths at low Reynolds number. Journal of Fluid Mechanics, 37, 799–825. doi.org/10.1017/S0022112069000899 doi: 10.1017/S0022112069000899
  • Sheikholeslami, M., Hatami, M., & Ganji, D. D. (2014). Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. Journal of Molecular Liquids, 190, 112–120. doi:10.1016/j.molliq.2013.11.002
  • Straughan, B. (2010). Porous convection with Cattaneo heat flux. International Journal of Heat and Mass Transfer, 53, 2808–2812. doi:10.1016/j.ijheatmasstransfer.2010.02.017
  • Tripathi, D. (2013). Study of transient peristaltic heat flow through a finite porous channel. Mathematical and Computer Modelling, 57, 1270–1283. 10.1016/j.mcm.2012.10.030 doi: 10.1016/j.mcm.2012.10.030
  • Tripathi, D., & Beg, O. A. (2014a). Peristaltic propulsion of generalized Burgers’ fluids through a non-uniform porous medium: A study of chyme dynamics through the diseased intestine. Mathematical Biosciences, 248, 67–77. doi:10.1016/j.mbs.2013.11.006
  • Tripathi, D., & Beg, O. A. (2014b). A study on peristaltic flow of nanofluids: Application in drug delivery systems. International Journal of Heat and Mass Transfer, 70, 61–70. doi:10.1016/j.ijheatmasstransfer.2013.10.044
  • Turkyilmazoglu, M., & Pop, I. (2013). Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. International Journal of Heat and Mass Transfer, 57, 82–88. doi:10.1016/j.ijheatmasstransfer.2012.10.006
  • Vasudev, C., Rao, U. R., Reddy, M. V., & Rao, G. P. (2010). Effect of heat transfer on peristaltic transport of a Newtonian fluid through a porous medium in an asymmetric vertical channel. European Journal of Scientific Research, 44, 79–92. doi:org/10.1155/2015/163832
  • Zhang, Y., Huang, H., Zhang, X., Zou, Y., & Tang, S. (2016). The effect of aspect ratio and axial magnetic field on thermocapillary convection in liquid bridges with a deformable free-surface. Engineering Applications of Computational Fluid Mechanics, 10, 16–28. doi:10.1080/19942060.2015.1101401