1,710
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of capillary infiltration into packing structures for the optimization of ceramic materials using the lattice Boltzmann method

, , &
Pages 485-499 | Received 27 Jan 2016, Accepted 10 May 2016, Published online: 26 Jul 2016

References

  • Aghajanian M., Emmons C., Rummel S., Barber P., Robb C., & Hibbard D. (2013). Effect of grain size on microstructure, properties and surface roughness of reaction bonded SiC ceramics. In J. L. Robichaud, M. Krödel, & W. A. Goodman (Eds.), Material technologies and applications to optics, structures, components and sub-systems (Vol. 8837-19). Bellingham, WA: SPIE Press. doi:10.1117/12.2024308
  • Alava M., Dube M., & Rost M. (2004). Imbibition in disordered media. Advances in Physics, 53, 83–175. doi:10.1080/00018730410001687363
  • Alawadhi E. M. (2010). Finite element simulations using ANSYS. Boca Raton, FL: Taylor & Francis.
  • Asthana R., Singh M., & Sobczak N. (2005). Infiltration processing of ceramic-metal composites: The role of wettability, reaction, and capillary flow. Journal of the Korean Ceramic Society, 42, 703–717. doi: 10.4191/KCERS.2005.42.11.703
  • Bao N., Zhou Y., Jiao K., Yin Y., Du Q., & Chen J. (2014). Effect of gas diffusion layer deformation on liquid water transport in proton exchange membrane fuel cell. Engineering Applications of Computational Fluid Mechanics, 8, 26–43. doi:10.1080/19942060.2014.11015495
  • Bear J. (1972). Dynamics of fluids in porous media. New York, NY: Elsevier.
  • Benzi R., Succi S., & Vergassola M. (1992). The lattice Boltzmann equation: Theory and applications. Physics Reports, 222, 145–197. doi:10.1016/0370-1573(92)90090-M
  • Bhatnagar P. L., Gross E. P., & Krook M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94, 511–525. doi:10.1103/PhysRev.94.511
  • Blow M. L., Kusumaatmaja H., & Yeomans J. M. (2009). Imbibition through an array of triangular posts. Journal of Physics: Condensed Matter, 21:464125. doi:10.1088/0953-8984/21/46/464125
  • Bohn R. B., & Garboczi E. J. (2003). User manual for finite element and finite difference programs: A parallel version of NISTIR-6269 (NIST Internal Report No. 6997). Gaithersburg, MD: Building and Fire Research Laboratory, National Institute of Standards and Technology.
  • Bougiouri V., Voytovych R., Rojo-Calderon N., Narciso J., & Eustathopoulos N. (2006). The role of the chemical reaction in the infiltration of porous carbon by NiSi alloys. Scripta Materialia, 54, 1875–1878. doi:10.1016/j.scriptamat.2006.02.015
  • Chen S., & Doolen G. D. (1998). Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30, 329–364. doi:10.1146/annurev.fluid.30.1.329
  • Chibbaro S. (2008). Capillary filling with pseudo-potential binary Lattice-Boltzmann model. The European Physical Journal E, 27, 99–106. doi:10.1140/epje/i2008-10369-4
  • Chibbaro S., Biferale L., Binder K., Dimitrov D., Diotallevi F., Milchev A., & Succi S. (2009). Hydrokinetic simulations of nanoscopic precursor films in rough channels. Journal of Statistical Mechanics: Theory and Experiments, 2009, PO6007. doi:10.1088/1742-5468/2009/06/P06007
  • Chibbaro S., Biferale L., Diotallevi F., & Succi S. (2009). Capillary filling for multicomponent fluid using the pseudo-potential Lattice Boltzmann method. The European Physical Journal Special Topics, 171, 223–228. doi:10.1140/epjst/e2009-01032-8
  • Chibbaro S., Costa E., Dimitrov D. I., Diotallevi F., Milchev A., Palmieri D., … Succi S. (2009). Capillary filling in microchannels with wall corrugations: A comparative study of the Concus-Finn criterion by continuum, kinetic, and atomistic approaches. Langmuir, 25, 12653–12660. doi:10.1021/la901993r
  • de Gennes P. G., Brochard-Wyart F., & Quéré D. (2004). Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. New York, NY: Springer.
  • Dezellus O., & Eustathopoulos N. (2010). Fundamental issues of reactive wetting by liquid metals. Journal of Materials Science, 45, 4256–4264. doi:10.1007/s10853-009-4128-x
  • Dezellus O., Hodaj F., & Eustathopoulos N. (2003). Progress in modelling of chemical-reaction limited wetting. Journal of the European Ceramic Society, 23, 2797–2803. doi:10.1016/S0955-2219(03)00291-7
  • Diotallevi F., Biferale L., Chibbaro S., Lamura A., Pontrelli G., Sbragaglia M., … Toschi T. (2009). Capillary filling using lattice Boltzmann equations: The case of multi-phase flows. The European Physical Journal Special Topics, 166, 111–116. doi:10.1140/epjst/e2009-00889-7
  • Diotallevi F., Biferale L., Chibbaro S., Pontrelli G., Toschi F., & Succi S. (2009). Lattice Boltzmann simulations of capillary filling: Finite vapour density effects. The European Physical Journal Special Topics, 171, 237–243. doi:10.1140/epjst/e2009-01034-6
  • Donev A., Cisse I., Sachs D., Variano E. A., Stillinger F. H., Connelly R., … Chaikin P. M. (2004). Improving the density of jammed disordered packings using ellipsoids. Science, 303, 990–993. doi:10.1126/science.1093010
  • Duda A., Koza Z., & Matyka M. (2011). Hydraulic tortuosity in arbitrary porous media flow. Physical Review E, 84, 036319. doi:10.1103/PhysRevE.84.036319
  • Dullien F. A. L. (1992). Porous media: Fluid transport and pore structure. San Diego, CA: Academic Press.
  • Einset E. O. (1996). Capillary infiltration rates into porous media with applications to silcomp processing. Journal of the American Ceramic Society, 79, 333–338. doi:10.1111/j.1151-2916.1996.tb08125.x
  • Einset E. O. (1998). Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites. Chemical Engineering Science, 53, 1027–1039. doi:10.1016/S0009-2509(97)00379-5
  • Eustathopoulos N. (2015). Wetting by liquid metals—application in materials processing: The contribution of the Grenoble group. Metals, 5, 350–370. doi:10.3390/met5010350
  • Eustathopoulos N., Nicholas M. G., & Drevet B. (1999). Wettability at high temperatures. Oxford: Pergamon.
  • Fan S., Zhang L., Xu Y., Cheng L., Tian G., Ke S., … Liu H. (2008). Microstructure and tribological properties of advanced carbon/silicon carbide aircraft brake materials. Composites Science and Technology, 68, 3002–3009. doi:10.1016/j.compscitech.2008.06.013
  • Furler P., Scheffe J., Gorbar M., Moes L., Vogt U., & Steinfeld A. (2012). Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy and Fuels, 26, 7051–7059. doi:10.1021/ef3013757
  • Gadow R. (2000). Current status and future prospects of CMC brake components and their manufacturing technologies. In T. Jessen & E. Ustundag (Eds.), Proceedings of the 24th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures A (Vol. 21, pp. 15–29). Hoboken, NJ: Wiley & Sons. doi:10.1002/9780470294628.ch2
  • Gadow R., & Speicher M. (2000). Optimized morphological design for silicon infiltrated microporous carbon preforms. In T. Jessen & E. Ustundag (Eds.), Proceedings of the 24th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures A (Vol. 21, pp. 485–492). Hoboken, NJ: Wiley & Sons. doi:10.1002/9780470294628.ch57
  • Gern F. H., & Kochendörfer R. (1997). Liquid silicon infiltration: Description of infiltration dynamics and silicon carbide formation. Composites Part A: Applied Science and Manufacturing, 28, 355–364. doi:10.1016/S1359-835X(96)00135-2
  • Ghosh S., Patil P., Mishra S. C., Das A. K., & Das P. K. (2012). 3-D lattice Boltzmann model for asymmetric Taylor bubble and Taylor drop in inclined channel. Engineering Applications of Computational Fluid Mechanics, 6, 383–394. doi:10.1080/19942060.2012.11015429
  • Goodall R., & Mortensen A. (2014). Porous metals. In D. E. Laughlin & K. Huno (Eds.), Physical metallurgy (pp. 2399–2595). Waltham, MA: Elsevier. doi:10.1016/B978-0-444-53770-6.00024-1
  • Gross M., Varnik F., Raabe D., & Steinbach I. (2010). Small droplets on superhydrophobic substrates. Physical Review E, 81, 051606. doi:10.1103/PhysRevE.81.051606
  • Haghani R., Rahimian M. H., & Taghilou M. (2013). LBM simulation of a droplet dripping down a hole. Engineering Applications of Computational Fluid Mechanics, 7, 461–470. doi:10.1080/19942060.2013.11015485
  • He X., & Luo L.-S. (1997). Lattice Boltzmann model for the incompressible Navier–Stokes equation. Journal of Statistical Physics, 88, 927–944. doi:10.1023/B:JOSS.0000015179.12689.e4
  • Hillig W. B., Mehan R. L., Morelock C. R., DeCarlo V. J., & Laskow W. (1975). Silicon/silicon carbide composites. American Ceramic Society Bulletin, 54, 1054–1056.
  • Israel R., Voytovych R., Protsenko P., Drevet B., Camel D., & Eustathopoulos N. (2010). Capillary interactions between molten silicon and porous graphite. Journal of Materials Science, 45, 2210–2217. doi:10.1007/s10853-009-3889-6
  • Joshi A. S., & Sun Y. (2010). Wetting dynamics and particle deposition for an evaporating colloidal drop: A lattice Boltzmann study. Physical Review E, 82, 041401. doi:10.1103/PhysRevE.82.041401
  • Komnik A., Harting J., & Herrmann H. J. (2004). Transport phenomena and structuring in shear flow of suspensions near solid walls. Journal of Statistical Mechanics: Theory and Experiment, 2004, P12003. doi:10.1088/1742-5468/2004/12/P12003
  • Koponen A., Kandhai D., Hellén E., Alava M., Hoekstra A., Kataja M., … Timonen J. (1998). Permeability of three-dimensional random fiber webs. Physical Review Letters, 80, 716–719. doi:10.1103/PhysRevLett.80.716
  • Krenkel W., & Berndt F. (2005). C/C-SiC composites for space applications and advanced friction systems. Materials Science and Engineering A, 412, 177–181. doi.org/10.1016/j.msea.2005.08.204 doi: 10.1016/j.msea.2005.08.204
  • Kusumaatmaja H., Pooley C. M., Girardo S., Pisignano D., & Yeomans J. M. (2008). Capillary filling in patterned channels. Physical Review E, 77, 067301. doi:10.1103/PhysRevE.77.067301
  • Landau L. D., & Lifshitz E. M. (2008). Fluid mechanics. Burlington, MA: Elsevier.
  • Liu G. W., Muolo M. L., Valenza F., & Passerone A. (2010). Survey on wetting of SiC by molten metals. Ceramics International, 36, 1177–1188. doi:10.1016/j.ceramint.2010.01.001
  • Liu H., Valocchi A. J., & Kang Q. (2012). Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Physical Review E, 85, 046309. doi:10.1103/PhysRevE.85.046309
  • Martins G. P., Olson D. L., & Edwards G. R. (1988). Modeling of infiltration kinetics for liquid metal processing of composites. Metallurgical and Materials Transactions B, 19, 95–101. doi:10.1007/BF02666495
  • Martys N. W., & Chen H. D. (1996). Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Physical Review E, 53, 743–750. doi:10.1103/PhysRevE.53.743
  • Matyka M., & Koza Z. (2012). How to calculate tortuosity easily? In K. Vafai (Ed.), Porous media and its applications in science, engineering, and industry (pp. 17–22). Melville, NY: American Institute of Physics. doi:10.1063/1.4711147
  • Messner R. P., & Chiang Y.-M. (1990). Liquid-phase reaction-bonding of silicon carbide using alloyed silicon-molybdenum melts. Journal of the American Ceramic Society, 73, 1193–1200. doi:10.1111/j.1151-2916.1990.tb05179.x
  • Mognetti B. M., & Yeomans J. M. (2009). Capillary filling in microchannels patterned by posts. Physical Review E, 80, 056309. doi:10.1103/PhysRevE.80.056309
  • Mortensen A., Drevet B., & Eustathopoulos N. (1997). Kinetics of diffusion-limited spreading of sessile drops in reactive wetting. Scripta Materialia, 36, 645–651. doi:10.1016/S1359-6462(96)00431-9
  • Paik U., Park H.-C., Choi S.-C., Ha C.-G., Kim J.-W., & Jung Y.-G. (2002). Effect of particle dispersion on microstructure and strength of reaction-bonded silicon carbide. Materials Science and Engineering: A, 334, 267–274. doi:10.1016/S0921-5093(01)01897-4
  • Patro D., Bhattacharyya S., & Jayram V. (2007). Flow kinetics in porous ceramics: Understanding with non-uniform capillary models. Journal of the American Ceramic Society, 90, 3040–3046. doi:10.1111/j.1551-2916.2007.01776.x
  • Roberson C., & Hazell P. J. (2003). Resistance of silicon carbide to penetration by a tungsten carbide cored projectile. In E. Medvedovsk (Ed.), Proceedings of the 105th Annual Meeting of the American Ceramic Society: Ceramic armor and armor systems (pp. 165–174). Hoboken, NJ: Wiley & Sons. doi:10.1002/9781118406793.ch14
  • Salamone S., Karandikar P., Marshall A., Marchant D. D., & Sennett M. (2008). Effects of Si:SiC ratio and SiC grain size on properties for RBSC. In E. Lara-Curzio, J. Salem, & D. Zhu (Eds.), Mechanical properties and performance of engineering ceramics and composites III (pp. 101–109). Hoboken, NJ: Wiley & Sons. doi:10.1002/9780470339497.ch10
  • Sangsuwan P., Orejas J. A., Gatica J. E., Tewari S. N., & Singh M. (2001). Reaction-bonded silicon carbide by reactive infiltration. Industrial & Engineering Chemistry Research, 40, 5191–5198. doi:10.1021/ie001029e
  • Scocchi G., Ortona A., Grossi L., Bianchi G., D'Angelo C., Leidi T., & Gilardi R. (2013). Evaluation of a simple finite element method for the calculation of effective electrical conductivity of compression moulded polymer-graphite composites. Composites Part A: Applied Science and Manufacturing, 48, 15–25. doi:10.1016/j.compositesa.2012.12.013
  • Sergi D., Camarano A., Molina J. M., Ortona A., & Narciso J. (2016). Surface growth for molten silicon infiltration into carbon millimeter-sized channels: Lattice-Boltzmann simulations, experiments and models. International Journal of Modern Physics C, 27, 1–24. doi:10.1142/S0129183116500625
  • Sergi D., D'Angelo C., Scocchi G., & Ortona A. (2012). Random packing of small blocks: Pressure effects, orientational correlations and application to polymer-based composites. Particle & Particle Systems Characterization, 29, 24–34. doi:10.1002/ppsc.201200001
  • Sergi D., Grossi L., Leidi T., & Ortona A. (2014). Surface growth effects on reactive capillary-driven flow: Lattice Boltzmann investigation. Engineering Applications of Computational Fluid Mechanics, 8, 549–561. doi:10.1080/19942060.2014.11083306
  • Sergi D., Grossi L., Leidi T., & Ortona A. (2015). Lattice Boltzmann simulations on the role of channel structure for reactive capillary infiltration. Engineering Applications of Computational Fluid Mechanics, 9, 301–323. doi:10.1080/19942060.2015.1026432
  • Sherwood J. D. (1997). Packing of spheroids in three-dimensional space by random sequential addition. Journal of Physics A: Mathematical and General, 30, L839–L843. doi:10.1088/0305-4470/30/24/004
  • Succi S. (2009). The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Oxford University Press.
  • Sukop M. C., & Thorne D. T., Jr. (2010). Lattice Boltzmann modeling: An introduction for geoscientists and engineers. Berlin: Springer.
  • Torquato S. (2002). Random heterogeneous materials: Microstructures and macroscopic properties. New York, NY: Springer.
  • Voytovych R., Bougiouri V., Calderon N. R., Narciso J., & Eustathopoulos N. (2008). Reactive infiltration of porous graphite by NiSi alloys. Acta Materialia, 56, 2237–2246. doi:10.1016/j.actamat.2008.01.011
  • Wagner A. J. (2003). The origin of spurious velocities in lattice Boltzmann. International Journal of Modern Physics B, 17, 193–196. doi:10.1142/S0217979203017448
  • Wang M., & Pan N. (2008). Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. International Journal of Heat and Mass Transfer, 51, 1325–1331. doi:10.1016/j.ijheatmasstransfer.2007.11.031
  • Washburn E. W. (1921). The dynamics of capillary rise. Physical Review, 27, 273–283. doi:10.1103/PhysRev.17.273
  • Widom B. (1966). Random sequential addition of hard spheres to a volume. The Journal of Chemical Physics, 44, 3888–3894. doi:10.1063/1.1726548
  • Wiklund H., & Uesaka T. (2012). Edge-wicking: Micro-fluidics of two-dimensional liquid penetration into porous structures. Nordic Pulp and Paper Research Journal, 27, 403–408. doi:10.3183/NPPRJ-2012-27-02-p403-408
  • Wiklund H., & Uesaka T. (2013). Microfluidics of imbibition in random porous media. Physical Review E, 87, 023006. doi:10.1103/PhysRevE.87.023006
  • Wolf-Gladrow D. A. (2005). Lattice-gas cellular automata and lattice Boltzmann models: An introduction. Berlin: Springer.
  • Yang J., & Ilegbusi O. J. (2000). Kinetics of silicon-metal alloy infiltration into porous carbon. Composites Part A: Applied Science and Manufacturing, 31, 617–625. doi:10.1016/S1359-835X(99)00089-5