3,972
Views
7
CrossRef citations to date
0
Altmetric
Articles

Influence of drag closures and inlet conditions on bubble dynamics and flow behavior inside a bubble column

, &
Pages 127-141 | Received 29 Apr 2016, Accepted 13 Oct 2016, Published online: 14 Nov 2016

References

  • Besbes, S., Hajem, M. E., Ben Aissia, H., Champagne, J. Y., & Jay, J. (2015). PIV measurements and Eulerian–Lagrangian simulations of the unsteady gas–liquid flow in a needle sparger rectangular bubble column. Chemical Engineering Science, 126, 560–572. doi: 10.1016/j.ces.2014.12.046
  • Chatterjee, S., & Chattopadhyay, k. (2015). Formation of slag eye in an inert gas shrouded Tundish. ISIJ International, 55(7), 1416–1424. doi: 10.2355/isijinternational.55.1416
  • Chatterjee, S., & Chattopadhyay, k. (2016). Physical modeling of slag ‘Eye’in an inert gas-shrouded Tundish using dimensional analysis. Metallurgical and Materials Transactions, 47(1), 508–521. doi: 10.1007/s11663-015-0512-x
  • Chattopadhyay, K., & Guthrie, R. (2011). Considerations in using the discrete phase model. steel research international, 82(11), 1287–1289. doi: 10.1002/srin.201000214
  • Clift, R., Grace, J. R., & Weber, M. E. (2005). Bubbles, drops, and particles. New York: Courier Corporation.
  • Deen, N., Hjertager, B. H., & Solberg, T. (2000). Comparison of PIV and LDA measurement methods applied to the gas liquid flow in a bubble column. Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.
  • Deen, N. G., Solberg, T., & Hjertager, B. H. (2001). Large eddy simulation of the gas–liquid flow in a square cross-sectioned bubble column. Chemical Engineering Science, 56(21), 6341–6349. doi: 10.1016/S0009-2509(01)00249-4
  • Delnoij, E., Kuipers, J., & Swaaij, W. v. (1999). A three-demensional CFD model for gas-liquid bubble columns. Chemical Engineering Science, 54(13–14), 2217–2226. doi: 10.1016/S0009-2509(98)00362-5
  • Delnoij, E., Lammers, F., Kuipers, J., & Swaaij, W. v. (1997). Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chemical Engineering Science, 52(9), 1429–1458. doi: 10.1016/S0009-2509(96)00515-5
  • Deshpande, S., Anumolu, L., & Trujillo, M. (2012). Evaluating the performance of the two-phase flow solver interFoam. Computational Science & Discovery, 5(1), 14–16. doi: 10.1088/1749-4699/5/1/014016
  • Dijkhuizen, W., Roghair, I., van Sint Annaland, M., & Kuipers, J. (2010). DNS of gas bubbles behaviour using an improved 3D front tracking model-drag force on isolated bubbles and comparison with experiments. Chemical Engineering Science, 65(4), 1415–1426. doi: 10.1016/j.ces.2009.10.021
  • Ervin, E., & Tryggvason, G. (1997). The rise of bubbles in a vertical shear flow. Journal of Fluid Engineering, 119(2), 443–449. doi: 10.1115/1.2819153
  • Grace, J., Wairegi, T., & Nguyen, T. (1976). Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Transactions of the Institution of Chemical Engineers, 54(3), 167–173.
  • Greifzu, F., Kratzsch, C., Forgber, T., Lindner, F., & Schwarze, R. (2016). Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT. Engineering Applications of Computational Fluid Mechanics, 10(1), 30–43. doi: 10.1080/19942060.2015.1104266
  • Hirt, C., & Nichols, B. (1981). Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. doi: 10.1016/0021-9991(81)90145-5
  • Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843–855. doi: 10.1002/aic.690250513
  • Jain, D., Kuipers, J., & Deen, N. (2014). Numerical study of coalescence and breakup in a bubble column using a hybrid volume of fluid and discrete bubble model approach. Chemical Engineering Science, 119, 134–146. doi: 10.1016/j.ces.2014.08.026
  • Jakobsen, H., Sannaes, B., Grevskott, S., & Svendsen, H. (1997). Modeling of vertical bubble driven flows. Industrial and Engineering Chemistry Research, 36(10), 4052–4074. doi: 10.1021/ie970276o
  • Klostermann, J., Schaake, K., & Schwarze, R. (2013). Numerical simulation of a single rising bubble by VOF with surface compression. International Journal for Numerical Methods in Fluids, 71(8), 960–982. doi: 10.1002/fld.3692
  • Lau, Y. M., Bai, W., Deen, N. G., & Kuipers, J. (2014). Numerical study of bubble break-up in bubbly flows using a deterministic Euler–Lagrange framework. Chemical Engineering Science, 108, 9–22. doi: 10.1016/j.ces.2013.12.034
  • Lau, Y. M., Roghair, I., Deen, N. G., van Sint Annaland, M., & Kuipers, J. A. (2011). Numerical investigation of the drag closure for bubbles in bubble swarms. Chemical Engineering Science, 66(14), 3309–3316. doi: 10.1016/j.ces.2011.01.053
  • Ma, T., Lucas, D., Ziegenhein, T., Fröhlich, J., & Deen, N. G. (2015). Scale-adaptive simulation of a square cross-sectional bubble column. Chemical Engineering Science, 131, 101–108. doi: 10.1016/j.ces.2015.03.047
  • Masood, R., & Delgado, A. (2014). Numerical investigation of the interphase forces and turbulence closure in 3D square bubble columns. Chemical Engineering Science, 108, 154–168. doi: 10.1016/j.ces.2014.01.004
  • Mei, R., Klausner, J. F., & Lawrence, C. J. (1994). A note on the history force on a spherical bubble at finite Reynolds number. Physics of Fluids, 6, 418–420. doi: 10.1063/1.868039
  • Miao, X., Lucas, D., Ren, Z., Eckert, S., & Gerbeth, G. (2013). Numerical modeling of bubble-driven liquid metal flows with external static magnetic field. International Journal of Multiphase Flow, 48, 32–45. doi: 10.1016/j.ijmultiphaseflow.2012.07.014
  • Movahedirad, S., Ghafari, M., & Dehkordi, A. M. (2012). Discrete bubble model for prediction of bubble behavior in 3D fluidized beds. Chemical Engineering & Technology, 35(5), 929–936. doi: 10.1002/ceat.201100383
  • Pan, Y., Dudukovic, M. P., & Chang, M. (1999). simulation of bubbly flow in bubble columns. Chemical Engineering Science, 54(13), 2481–2489. doi: 10.1016/S0009-2509(98)00453-9
  • Pourtousi, M., Sahu, J., & Ganesan, P. (2014). Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column. Chemical Engineering and Processing, 75, 38–47. doi: 10.1016/j.cep.2013.11.001
  • Renze, P., Buffo, A., & Marchisio, D. (2014). Simulation of coalescence, breakup, and mass transfer in polydisperse multiphase flows. Chemie Ingenieur Technik, 86(7), 1088–1098. doi: 10.1002/cite.201400004
  • Roghair, I., Lau, Y., Deen, N., Slagter, W., Baltussen, V. S., & Kuipers, J. (2011). On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers. Chemical Engineering Science, 66(14), 3204–3211. doi: 10.1016/j.ces.2011.02.030
  • Sankaranarayanan, K., Shan, X., Kevrekidis, I. G., & Sundaresan, S. (1999). Bubble flow simulations with the lattice Boltzmann method. Chemical Engineering Science, 54(21), 4817–4823.
  • Sankaranarayanan, K., Shan, X., Kevrekidis, I. G., & Sundaresan, S. (2002). Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the Lattice Boltzmann Method. Journal of Fluid Mechanics, 452, 61–96. doi: 10.1017/S0022112001006619
  • Schiller, L., & Naumann, Z. (1935). A drag coefficient correlation. Verein Deutscher Ingenieure, 77(318), 51.
  • Schwarz, S., & Fröhlich, J. (2013). Simulation of a bubble chain in a container of high aspect ratio exposed to a magnetic. The European Physical Journal Special Topics, 220(1), 195–205. doi: 10.1140/epjst/e2013-01807-2
  • Shah, Y., Kelkar, B., Godbole, S., & Deckwer, W. (1982). Design parameters estimation for bubble column reactors. AIChE Journal, 28, 353–379. doi: 10.1002/aic.690280302
  • Shalaby, H., Wozniak, k., & Gönter, W. (2008). Numerical calculation of particle-laden cyclone separator flow using LES. Engineering Applications of Computational Fluid Mechanics, 2(4), 382–392. doi: 10.1080/19942060.2008.11015238
  • Shirani, E., Jafari, A., & Ashgriz, N. (2006). Turbulence models for flows with free surfaces and interfaces. AIAA Journal, 44, 1454–1462. doi: 10.2514/1.16647
  • Simonnet, M. C., Gentric, C., Olmos, E., & Midoux, N. (2007). Experimental determination of the drag coefficient in a swarm of bubbles. Chemical Engineering Science, 62(3), 858–866. doi: 10.1016/j.ces.2006.10.012
  • Smith, B. L. (1998). On the modelling of bubble plumes in a liquid pool. Applied Mathematical Modelling, 22(10), 773–797. doi: 10.1016/S0307-904X(98)10023-9
  • Sokolichin, A., & Eigenberge, G. (1999). Applicability of the standard k-e turbulence model to the dynamic simulation of bubble columns: Part I. detailed numerical simulation. Chemical Engineering Science, 54(13), 2273–2284. doi: 10.1016/S0009-2509(98)00420-5
  • Sommerfield, M., Bourloutski, E., & Bröder, D. (2003). Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence. The Canadian Journal of Chemical Engineering, 81(3–4), 508–518. doi: 10.1002/cjce.5450810324
  • Spalart, P. R., Deck, S., Shur, M. L., Squires, K., Strelets, M. k., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195. doi: 10.1007/s00162-006-0015-0
  • Tomiyama, A., Kataoka, I., Zun, I., & Sakaguchi, T. (1998). Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal Series B Fluids and Thermal Engineering, 41, 472–479. doi: 10.1299/jsmeb.41.472
  • Tomiyama, A., Tamai, H., Zun, I., & Hosokawa, S. (2002). Transverse migration of single bubbles in simple shear flows. Chemical Engineering Science, 57(11), 1849–1858. doi: 10.1016/S0009-2509(02)00085-4
  • Tryggvason, G., Scardovelli, R., & Zaleski, S. (2011). Direct numerical simulations of gas–liquid multiphase flows. Cambridge: Cambridge University Press.
  • Van der Hoef, M., van Sint Annaland, M., Deen, N., & Kuipers, J. (2008). Numerical simulation of dense gas-solid fluidized beds: A multiscale modeling strategy. Annual Review of Fluid Mechanics, 40, 47–70. doi: 10.1146/annurev.fluid.40.111406.102130
  • Wörner, M. (2012). Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications. Microfluidics and Nanofluidics, 12(6), 841–886. doi: 10.1007/s10404-012-0940-8
  • Yeoh, G., & Jiyuan, T. (2009). Computational techniques for multiphase flows. Butterworth-Heinemann: Elsevier.
  • Zhang, D., Deen, N., & Kuipers, J. (2006). Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces. Chemical Engineering Science, 61(23), 7593–7608. doi: 10.1016/j.ces.2006.08.053
  • Ziegenhein, T., Rzehak, R., & Lucas, D. (2015). Transient simulation for large scale flow in bubble columns. Chemical Engineering Science, 122, 1–13. doi: 10.1016/j.ces.2014.09.022
  • Ziegenhein, T., Rzehak, R., Krepper, E., & Lucas, D. (2013). Numerical simulation of polydispersed flow in bubble columns with the inhomogeneous multi-size-group model. Chemie Ingenieur Technik, 85(7), 1080–1091. doi: 10.1002/cite.201200223
  • Zun, I. (1980). The transverse migration of bubbles influenced by walls in vertical bubbly flow. International Journal of Multiphase Flow, 6(6), 583–588. doi: 10.1016/0301-9322(80)90053-1